
TODO

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Teleport - Features Testing Q3 2021

Advanced Access Workflows
Slack, Mattermost Plugins
Terraform Provider

Prepared for: Gravitational, Inc. DBA Teleport
Prepared by: Lorenzo Stella
Date: July 23rd, 2021

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Table of Contents
Table of Contents 1

Revision History 2

Contacts 2

Executive Summary 3

Methodology 5

Project Findings 6

Appendix A - Vulnerability Classification 36

Appendix B - Remediation Checklist 37

 of WWW.DOYENSEC.COM1 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 37

Version Date Description Author

1 07/23/2021 First release of the final report Lorenzo Stella

2 07/23/2021 Peer Review Ben Caller

3 07/23/2021 Peer Review Luca Carettoni

4 07/15/2022 Retesting Lorenzo Stella

Company Name Email

Gravitational, Inc Russell Jones rjones@gravitational.com

Gravitational, Inc Sasha Klizhentas sasha@gravitational.com

Gravitational, Inc Alexey Kontsevoy alexey@gravitational.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

Doyensec, LLC John Villamil john@doyensec.com

http://www.doyensec.com
mailto:rjones@gravitational.com
mailto:sasha@gravitational.com
mailto:alexey@gravitational.com
mailto:luca@doyensec.com
mailto:john@doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Executive Summary

Overview

Gravitational, Inc (DBA "Teleport") engaged
Doyensec to perform a security assessment on
some of the recent Teleport platform features.
Teleport is a cloud-native SSH gateway for
managing access to clusters of Linux servers via
SSH or Kubernetes APIs.

The project commenced on 07/05/2021 and
ended on 07/23/2021 requiring two (2) security
researchers, for a total of fifteen (15) person/
days. The project resulted in twelve (12) findings
of which one (1) was rated with high severity.

In July 2022, Doyensec performed a retesting of
the Teleport Features in scope and confirmed the
effectiveness of the applied mitigations. All
issues with direct security impact have been
addressed by Gravitational.

The project consisted of a manual web
application security assessment, source code
review, and dynamic instrumentation of the target.
Testing focused exclusively on the features listed
in scope below.

Testing was conducted remotely from Doyensec
EMEA and US offices.

Scope

Through meetings with Teleport, the scope of the
project was clearly defined.

• Identify misconfigurations and vulnerabilities
in the new Teleport's Advanced Access
Workflows feature and Slack+Mattermost
plugins

• Identify misconfigurations in the Terraform
provider

• Evaluate the overall security posture and
feature design

Based on the information provided and through
conversation with the Teleport team, Doyensec
included in the scope the following components:

• Teleport Advanced Access Workflows
• github.com/gravitational/teleport#5441

• Predicate Logic Library used by AAW
• github.com/vulcand/predicate

• Teleport Plugins (Slack, Mattermost)
• github.com/gravitational/teleport-plugins

• Teleport Terraform provider
• github.com/gravitational/teleport-plugins/

pull/197

The testing took place in a development
environment using the latest version of the
software at the time of testing.

In detail, this activity was performed on the
following commits:

• https://github.com/gravitational/teleport
f475425bb88054e7f3944433236720fbd6b87e24

• https://github.com/vulcand/predicate
8fbfb3ab0e94276b6b58bec378600829adc7a203

• https://github.com/gravitational/teleport-
plugins
b671c3dc3c458bc4ba1d553a3d96c475fab77cbf

Scoping Restrictions

During the engagement, Doyensec did not
e n c o u n t e r a n y d i f fi c u l t i e s t e s t i n g t h e
functionalities of the application. Teleport
engineering team was very responsive in
debugging any issue to ensure a smooth
assessment.

 of WWW.DOYENSEC.COM3 37

http://www.doyensec.com
http://github.com/gravitational/teleport#5441
http://github.com/vulcand/predicate
http://github.com/gravitational/teleport-plugins
https://github.com/gravitational/teleport-plugins/pull/197
https://github.com/gravitational/teleport-plugins/pull/197
https://github.com/gravitational/teleport
https://github.com/vulcand/predicate
https://github.com/gravitational/teleport-plugins
https://github.com/gravitational/teleport-plugins

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Testing focused on Teleport's new Advanced
Access Workflows feature and its Slack and
Mattermost plugins. Additionally, Teleport
included the “Terraform provider” in the scope for
the engagement.

It is also important to notice that Teleport is a
highly flexible platform in which several
configurations can be customized by the end-
user. For instance, permissions for roles/users are
completely customizable, hence Doyensec
focused on vulnerabilities in the core logic instead
of enumerating potential misconfigurations in
user-defined policies.

Findings Summary

Doyensec researchers discovered and reported
twelve (12) vulnerabilities in the selected Teleport
features.

While most of the issues are departures from best
practices and low-severity flaws, Doyensec
identified one (1) high severity and two (2)
medium severity issues that can be leveraged to
compromise the confidentiality, integrity, and
availability of the solution.

It is important to reiterate that this report
represents a snapshot of the security posture of
the environment at a point in time.

Major findings included an injection flaw that
allows terminal escape sequences and new lines
to be injected within approval request messages.
The ability to use Markdown in approval
messages was also reported as a potential area
of concern since it can be easily abused to setup
social engineering traps. A Denial of Service (DoS)
vulnerability was discovered in the way HTTP
request bodies are parsed by approval bots.

Considering the overall complexity of the targeted
features, the security posture was found to be in
line with industry best practices.

It is important to note that Doyensec performed a
design review on all features included for testing,
prior to their implementation.

Recommendations

The following recommendations are proposed
based on studying the Teleport security posture
and vulnerabilities discovered during this
engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas.

Long-term improvements

• At the time of writing, Teleport's custom
approval feature has been designed and
implemented accepting the following risks.
Future releases could attempt to mitigate
such minor intrinsic risks:

• Temporary, approved roles are also
considered when evaluating the
approval conditions for other roles

• If the attacker has view permissions
on the access requests, it is possible
to leak the roles of the users
approving a request

• The request reason and reviewer traits
are available at the same time inside
of the threshold filter context, which
allows the definition of predicates
having arbitrary user-input, potentially
leading to the disclosure of traits (e.g.
d e c l a r i n g a p r e d i c a t e h a v i n g
contains(reviewer.traits["foo"]
, request.reason))

 of WWW.DOYENSEC.COM4 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key for standing
against threats, thus we recommend a graybox
approach combining dynamic fault injection with
an in-depth study of source code to maximize the
ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g. OWASP
Testing guide recommendations) as well as
custom checklists to ensure full coverage of both
code and vulnerabilities classes.

Setup Phase

Telepor t provided access to the onl ine
environment, source code repository and binaries
for all components in scope.

Additionally, technical design documents were
also provided to Doyensec.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:

• Burp Suite
• Gosec
• golangci-lint
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is the Burp Suite, however
we also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 of WWW.DOYENSEC.COM5 37

http://www.doyensec.com
https://portswigger.net/burp/
https://github.com/securego/gosec
https://github.com/golangci/golangci-lint

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Project Findings
The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

This table is organized by time of discovery. The issues at the top were found first while those at the
bottom were found last. Presenting the table in this fashion has a number of benefits. It inherently shows
the path our auditing took through the target and may also reveal how easy or difficult it was to discover
certain findings. As a security engagement progresses, the researchers will gain a deeper understanding
of a target which is also shown in this table.

Findings Recap Table

ID Title Vulnerability Class Severity Status

TEL-Q321-1 Injectable Markdown Syntax In
Request Reason

Injection Flaws
(SQL, XML,

Command, Path,
etc)

Medium Closed

TEL-Q321-2 Email Validation Regular
Expression Prone To Abuses Insecure Design Informational Closed

TEL-Q321-3
Lack Of Active Session

Invalidation Capabilities After
Elevation Request

Insecure Design Low Closed

TEL-Q321-4 Missing Default Escalation
Prevention Checks Insecure Design Informational Risk

Accepted

TEL-Q321-5

Injectable Terminal Escape
Sequences And Newlines In

Request Reason (TEL-Q420-11
regression)

Injection Flaws
(SQL, XML,

Command, Path,
etc)

High Closed

TEL-Q321-6
Incorrect Handling Of Large
Request Bodies Leads to Bot
Messages Being Discarded

Denial of Service
(DoS) Medium Closed

TEL-Q321-7 Missing Audit Trail For Some
Access Request Events Insecure Design Low Closed

TEL-Q321-8 No Role Revocation After An
Access Request Deletion

Insufficient
Authentication and

Session
Management

Low Closed

TEL-Q321-9 Missing Secret Management In
Terraform Provider

Insufficient
Cryptography Informational Closed

 of WWW.DOYENSEC.COM6 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

TEL-Q321-10
API Path Injection In

Mattermost Bot Calls Through
Reviewer's Email

Injection Flaws
(SQL, XML,

Command, Path,
etc)

Informational Closed

TEL-Q321-11 OOM DoS Risk in Gitlab
Webhook through ReadAll

Denial of Service
(DoS) Low Closed

TEL-Q321-12 Insecure Comparison Of Gitlab
Webhook Token

Insufficient
Cryptography Low Closed

ID Title Vulnerability Class Severity Status

 of WWW.DOYENSEC.COM7 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM8 37

Critical

High

Medium

Low

Informational 4

5

2

1

0

Denial of Service (DoS)

Insecure Design

Insufficient Cryptography

Injection Flaws

Insufficient Authentication
and Session Management 1

3

3

4

1

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

In Teleport, Access Requests submitted by users can also include a text message specifying the request
reason. This message is then embedded in the body of the Slack or Mattermost messages sent by the
respective Bots.

Doyensec found that it is possible for an attacker to inject valid Markdown syntax and manipulate the
aspect and the content of the messages. This can be leveraged by an attacker to mount convincing
phishing scams or to abuse operators carelessly trusting the Teleport Bot messages, leading to a
different elevation request.

Reproduction Steps
Both the Slack and Mattermost Markdown flavors allow to forge links that are seemingly legitimate but
pointing to arbitrary locations. In Mattermost, even inline images (https://docs.mattermost.com/help/
messaging/formatting-text.html) are injectable. By way of example, injecting the following access request
reason results in a spoofed link to https://doyensec.com:

none
Link: <https://doyensec.com/|https://doyensec-2021.gravitational.io:3080/web/
requests/bf82c0e5-86ce-4e9b-948c-84803e6b63df>
Click the above link to approve the request.

TEL-Q321-1. Injectable Markdown Syntax In Request Reason
Severity Medium

Vulnerability Class Injection Flaws (SQL, XML, Command, Path, etc)

Component teleport-plugins/access/slack/bot.go:255

Status Closed

 of WWW.DOYENSEC.COM9 37

https://docs.mattermost.com/help/messaging/formatting-text.html
https://docs.mattermost.com/help/messaging/formatting-text.html
https://doyensec.com
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Impact
An attacker may successfully launch a phishing scam and potentially obtain sensitive information or
escalate privileges.

Complexity
Complexity to craft the exploit is trivial; however, the attacker must be able to send access requests and
mount a convincing attack using social engineering techniques.

Remediation

Completely sanitize the user-provided message placing the request reason inside a code block with
tilde or back-tick characters, escaping any existing ones. Alternatively, allow only a restricted set of
characters for basic formatting.

 of WWW.DOYENSEC.COM10 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

Doyensec inspected the source code and found that the access request endpoint uses a Regular
Expression (RegEx). The expression is used to validate the user-provided reviewer field, usually containing
an email address (teleport-plugins/access/slack/app.go:361). This validation of the email address
format is too lax and as a result the check unexpectedly succeeds when validating incorrect email
address values.

In the Teleport web application, the risk of this scenario is present in teleport-plugins/lib/
email.go:5:

var emailRegex = regexp.MustCompile("^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-
Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-
Z0-9])?)*$")

While RFC 5322 supports a variety of email address formats, the risk profile of Teleport should lead to a
layered approach rather than relying on a single filter or defense based on a regular expression.
This was shown later in TEL-Q321-10, where the allowed presence of special character in the local part of
the email address was weaponized. Additionally, the Regular Expression is using grouping with repetition,
but since Golang's regex standard package is not using a Nondeterministic Finite Automaton (NFA) to 1 2

navigate the string but an RE2 implementation, there's a guarantee of a linear-time performance and
graceful failing: the memory available to the parser, the compiler and the execution engines is limited.

Reproduction Steps
The issue was validated using a dedicated regex security module (ReScue) that detects 3

potentially catastrophic exponential-time regular expressions and creates DoS payloads. Using the
generated payload:

• ?@0
• '/**/OR/**/1=1/**/--/**/@a.a
• %00%2a@a.a
• +%/`?/*|~6@0.0.0.0
• iS%+$qOSS/
YT1v3s#kjo~7mAQHlPWZrSQ54Zim0t.Tg=$'2jGUZ^Q25w^SHUqaHp@KczuQdjtH-5BMMvnhjNvK7oPG

TEL-Q321-2. Email Validation Regular Expression Prone To Abuses
Severity Informational

Vulnerability Class Insecure Design

Component teleport-plugins/lib/email.go

Status Closed

 https://golang.org/pkg/regexp/1

 http://en.wikipedia.org/wiki/Nondeterministic_finite_state_machine2

 https://github.com/2bdenny/ReScue 3

 of WWW.DOYENSEC.COM11 37

https://github.com/2bdenny/ReScue
http://www.doyensec.com
https://golang.org/pkg/regexp/
mailto:6@0.0.0.0
http://en.wikipedia.org/wiki/Nondeterministic_finite_state_machine

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

FuWjvMLjIbYNE4epqkAV9U9Uv07AKzARJlpkrlObqMJaNDE0f8Ru$976cNCxevgl9QYB3IO6f6Q7haFB
AKpyVkb83uaxfJsImWD77c2R9IBbanvLZZcRhvHFp-96CPLJQ0wdbOgknAybMPV5hSAkPupCO1wSc"6p
NPNkfURHkutSbmx9kiplHiT8Joxwo9okDRs44nLegAhppCxN10zrpoH755U81BOkEEkCxnHkc1gX3LSN
r6OgAqzyTKU3hfysg870VTa5uWD7WHYvlPPqvEx4UiUeU0nyFkt65Zl7ThPvb7c7IUtNktng68o1TskY
MCaT0g5AHz2KlWBQcFZlOn4jP2FygpwIm5RakqmRxoLOdsCERxEfjya5AzUz5DMrr6RxGOukaDWxSuTU
QLng5K48LOnxOVYQkKmXI6tpcMHCNxCsOzgA1ZYb89]MGe&0qw8DSIWgVvsunay6rkAq3MS70GL6UrLX
0gian2~NLez0AOjF1ekx8zbXVxx75shAoawKv18tsNfJTvK3FsOGmwiMkWR6Ws1.U`hRCrWqlbRhvQkH
7fnAqhePm{9rqHcwZ5hOvnA1j0AKWZJEK1MxTL2ce-
XjTzIgLDazitsHYlymSR2FNq8YgS1ayg13VYvML4Y00`zRruWvPYDfazKiFubMAc1QWOxdcqFyoYMWzE
CTjrXXx-a7OerG1PuSCBZSuNLG!
WfoNuIwbCV0C8p9fbH2WtzOjIlIb4eYOdfKE2NWcYtA%3.a6GZ2VRHnxXx1gak1y04aQOib|Q&p>a

Impact
Medium. An attacker may use this issue to mount more complex attack leveraging a weak validation.

Complexity
Medium. An attacker would need to craft a payload for the RegEx-validated string in order to exploit the
issue.

Remediation

Instead of updating the RegEx for the email validation, we recommend using a dedicated validation
library, which supports correct email validation.

Email validation is a fairly challenging process that we do not recommend conducting with manual
regular expressions.

Resources

• "Input Validation Cheat Sheet; Email Address Validation", OWASP Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#email-address-
validation

• "Safe email validation", Information Security Stack Exchange
https://security.stackexchange.com/questions/116116/safe-email-validation

• Codacy Blog, “Best Practices for Regular Expressions”
https://www.codacy.com/blog/best-practices-for-regular-expressions/

 of WWW.DOYENSEC.COM12 37

http://www.doyensec.com
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#email-address-validation
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#email-address-validation
https://security.stackexchange.com/questions/116116/safe-email-validation
https://www.codacy.com/blog/best-practices-for-regular-expressions/

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

When a Teleport user requests additional roles, the workflow API makes it easy to dynamically approve or
deny such requests. After an elevation is approved, there's no immediate way to immediately and
proactively terminate it. This design is fundamental to ensure that access privileges are handled
appropriately in case a request is wrongfully or maliciously approved or if a deprovisioning process to
immediately cut all granted access should be executed.

Reproduction Steps
In order to reproduce the issue:

1. Submit a new access request with a user (/web/requests/new)
2. Approve the access request
3. Observe that there's no way for the reviewers to terminate the elevation before the expiration

period passes

Impact
Medium. A user could maintain access until the expiration period, even if the role is mistakenly or
maliciously approved. A privileged reviewer should be able to remove the role assignment at any time.

Complexity
High. An attacker would still require a request to be approved. Scenarios that could require an
administrator to revoke an elevated role for a user include compromised accounts, access request
phishing, and other insider threats.

Remediation

To mitigate the risk, implement a session revocation feature for role elevations, initiated through the
web or the console.

Resources

• "Session Management Cheat Sheet", OWASP CheatSheets Series
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

TEL-Q321-3. Lack Of Active Session Invalidation Capabilities After
Elevation Request
Severity Low

Vulnerability Class Insecure Design

Component Teleport Advanced Access Workflows

Status Closed

 of WWW.DOYENSEC.COM13 37

http://www.doyensec.com
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

The management of access control requests is a complex and dynamic problem that involves business,
organizational, and legal constraints and a technical implementation. Access control design decisions
have to be made by humans, not technology, and the potential for errors is high. In the same way, Teleport
roles' policies are user-defined and can therefore be inherently insecure on creation, allowing role
elevations that can be abused to alter and promote attacker-controlled resources. This can happen if after
the role elevation the attacker can then:

• create or update their assigned roles
• create or update their user resources

The risk of vertical privilege escalation should be notified to the user, for instance by issuing a warning
during the request approval.

A secure by default design involves highlighting this risk to the reviewers before a potentially dangerous
role approval or when defining the request.roles elevations for a role.

The Resource Access Requests , feature introduced in Teleport 10 partially mitigates this issue, making 4 5

vertical privilege escalation less likely to occur.

Reproduction Steps
In order to reproduce the issue in the doyensec-2021 testing environment:

1. Change the Dictator privileges to also grant:

kind: role
metadata:
 id: 1625816982826230463
 name: dictator
spec:
 allow:
 rules:
 - resources:

TEL-Q321-4. Missing Default Escalation Prevention Checks
Severity Informational

Vulnerability Class Insecure Design

Component N/A

Status Risk Accepted

 https://github.com/gravitational/teleport/issues/10887 4

 https://goteleport.com/docs/enterprise/workflow/resource-requests/?scope=enterprise 5

 of WWW.DOYENSEC.COM14 37

https://goteleport.com/docs/enterprise/workflow/resource-requests/?scope=enterprise
https://github.com/gravitational/teleport/issues/10887
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

 - role
 verbs:
 - list
 - create
 - read
 - update
 - delete

2. While normally Bob has the Populist role assigned, Bob requests Dictator privileges

3. After assuming the Dictator role, Bob can edit their default Populist role and maintain the
privileges indefinitely. A similar result can be achieved if the elevated Dictator role had
permissions over user resources.

Impact
Medium. An insider threat could abuse loosely written roles resources together with the access request
workflow to escalate their privileges indefinitely.

Complexity
High. An attacker would still require their request to be approved. Sufficient understanding of Teleport
users/roles design is required.

Remediation

Prevent or warn about potential escalations, either on role creation/edit or on elevation approval.
Remediations against this type of attack vectors might involve UX and product changes.

 of WWW.DOYENSEC.COM15 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

As previously reported in TEL-Q420-11, the Approval Workflow API suffered from a CLI Content spoofing
issue through the request reason field. This could allow an attacker to inject arbitrary content, spoofing
multiple subsequent lines in the CLI table, in the context of a social engineering or phishing attack. The
issue was fixed by integrating a footnote mechanism, truncating long request strings.

While analyzing the web-based access requests, we found that terminal escape sequences (ANSI/VT)
and new lines are allowed and respected in the reasons text content when submitted via the web panel. A
terminal escape sequence is a special sequence of characters that is printed (like any other text).
However, if the terminal understands the sequence, it won’t display the character-sequence, but will
perform some action. Besides changing the color of the text, making it bold, or making the cursor blink,
they can also:

• Move the cursor in any direction or to any position
• Delete or spoof an arbitrary text
• Perform various screen manipulations
• Re-map keys on the keyboard
• ..or perform other tasks depending on the terminal emulator

Since these sequences can adversely change the appearance on the terminal, the risk of an attacker
abusing this to trick an operator into approving their access requests is very high . 6

Reproduction Steps
The following screenshot contains two requests. The first was submitted via CLI using the command,
while the second was submitted via web UI:

% tsh login --proxy doyensec-2021.gravitational.io:3080 --user alice --request-
roles dictator --request-reason "Sent via CLI Roses are
[0;31mred[0m, violets are [0;34mblue. "

TEL-Q321-5. Injectable Terminal Escape Sequences And Newlines In
Request Reason
Severity High

Vulnerability Class Injection Flaws (SQL, XML, Command, Path, etc)

Component • e/lib/web/access_request.go:29
• lib/auth/auth.go:1602

Status Closed

 https://www.infosecmatter.com/terminal-escape-injection/ 6

 of WWW.DOYENSEC.COM16 37

http://www.doyensec.com
https://www.infosecmatter.com/terminal-escape-injection/

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Impact

In a successful attack scenario, an attacker could inject arbitrary terminal sequences and interfere with
the console output, possibly forging a credible line on the elevation requests table. This could be used to
change the appearance of the request UUID before the copy-paste and approval.

Complexity

Whether such output can be exploited depends on the terminal program, and what that terminal does
depends on the escape codes that are being sent. Because of this, the complexity of crafting the exploit
can vary. However, the payload must be carefully crafted to work on the victim's terminal. The attacker
should also own a valid account and the elevation request should also be allowed by the account's
assigned role.

Remediation

Limit the length and the charset of the requesters' reasons (e.g. /^[\w @\/()]{0,60}$/).

Resources

• "Can “cat-ing” a file be a potential security risk?", StackExchange Security
https://security.stackexchange.com/questions/56307/can-cat-ing-a-file-be-a-potential-security-risk

• "A Blast From the Past: Executing Code in Terminal Emulators via Escape Sequences", Dejan Lukan
https://www.proteansec.com/linux/blast-past-executing-code-terminal-emulators-via-escape-
sequences/

• "Content Spoofing", OWASP Community Guides
https://owasp.org/www-community/attacks/Content_Spoofing

 of WWW.DOYENSEC.COM17 37

https://security.stackexchange.com/questions/56307/can-cat-ing-a-file-be-a-potential-security-risk
https://www.proteansec.com/linux/blast-past-executing-code-terminal-emulators-via-escape-sequences/
https://www.proteansec.com/linux/blast-past-executing-code-terminal-emulators-via-escape-sequences/
https://owasp.org/www-community/attacks/Content_Spoofing
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

One of the many objectives of Teleport Access Request bots in organizations is to provide visibility into
what's happening on the assets owned by the company. Using this feature, organizations can perform
continuous access monitoring to the appropriate team, helping in detecting intrusions or highlighting any
suspicious activity. An attacker in the middle of a privilege escalation attack will consequently be
interested in suppressing bot messages flagging their malicious activity. During the course of the
engagement, Doyensec discovered a technique to suppress elevation requests messages for both
Mattermost and Slack bots.

Because of a discrepancy between the maximum allowed request body of the Bot server versus the
amount allowed by the Slack or Mattermost APIs, an attacker can use the controlled "Reason" field to
craft a request with a large number of bytes. For Slack bots, any "Reason" having more than 5.000
characters will result in a rejection from the Slack API. For Mattermost, any "Reason" above 10.000 will
also throw an error, preventing the message from being sent.

Reproduction Steps
To reproduce the attack, it is possible to either:

• Instrument a non-transparent proxy between the Teleport web service and the User-Agent through
Burp Suite or Fiddler

• Intercept a valid web access request
• Use the Intruder tool or a script to craft the request payload including 5.000 characters in the request

reason value

Or adapt the following curl command, populating it with valid session tokens:

curl -i -s -k -X $'POST' \
 -H $'Host: doyensec-2021.gravitational.io:3080' -H $'Authorization: Bearer
c552d06e819347a1c2a5999a7a5cc90b5c4acf8a17fd1120c5c7375d0393adbc' -H $'Content-
Type: application/json; charset=utf-8' -H $'Origin: https://
doyensec-2021.gravitational.io:3080' -H $'Connection: close' -H $'Content-Length:
5081' \
 --data-binary $'{\"reason\":\"A*5000\",\"roles\":[\"dictator\"],
\"suggestedReviewers\":[\"lorenzo@doyensec.com\"]}' \

TEL-Q321-6. Incorrect Handling Of Large Request Bodies Leads to Bot
Messages Being Discarded
Severity Medium

Vulnerability Class Denial of Service (DoS)

Component
• teleport-plugins/access/slack/bot.go:120
• teleport-plugins/access/mattermost/

bot.go:212

Status Closed

 of WWW.DOYENSEC.COM18 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

 $'https://doyensec-2021.gravitational.io:3080/v1/enterprise/accessrequest'

This will fire the following request:

POST /v1/enterprise/accessrequest HTTP/1.1
Host: doyensec-2021.gravitational.io:3080
Authorization: Bearer
c552d06e819347a1c2a5999a7a5cc90b5c4acf8a17fd1120c5c7375d0393adbc
Content-Type: application/json; charset=utf-8
Connection: close
Content-Length: 5081

{
 "reason": "AAAAAAAAAA...*5.000",
 "roles": [
 "dictator"
],
 "suggestedReviewers": [
 "lorenzo@doyensec.com"
]
}

The service journal will then report the following exception messages:

Slack

User Message: invalid_blocks, invalid_blocks]
request_id:7a91edb7-27a3-405c-894c-0db5623b29b9 request_op:put request_state:PENDING slack/
app.go:195
ERRO Failed to process request error:[
ERROR REPORT:
Original Error: trace.aggregate invalid_blocks, invalid_blocks
Stack Trace:
 /go/src/github.com/gravitational/teleport-plugins/access/slack/
bot.go:140 main.Bot.Broadcast
 /go/src/github.com/gravitational/teleport-plugins/access/slack/app.go:274 main.
(*App).broadcastMessages
 /go/src/github.com/gravitational/teleport-plugins/access/slack/app.go:231 main.
(*App).onPendingRequest
 /go/src/github.com/gravitational/teleport-plugins/access/slack/app.go:184 main.
(*App).onWatcherEvent
 /go/src/github.com/gravitational/teleport-plugins/lib/watcherjob/
watcherjob.go:228 github.com/gravitational/teleport-plugins/lib/
watcherjob.job.eventFuncHandler.func1
 /go/src/github.com/gravitational/teleport-plugins/lib/process.go:195 github.com/
gravitational/teleport-plugins/lib.jobFunc.DoJob
 /go/src/github.com/gravitational/teleport-plugins/lib/process.go:83 github.com/
gravitational/teleport-plugins/lib.NewProcess.func2.1
 /usr/local/go/src/runtime/asm_amd64.s:1371 runtime.goexit
User Message: invalid_blocks, invalid_blocks] request_id:7579013b-7a27-478f-873d-
cc9464f6497c request_op:put request_state:PENDING slack/app.go:195

Mattermost

ERRO Failed to process request error:[
ERROR REPORT:

 of WWW.DOYENSEC.COM19 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Original Error: trace.aggregate api error status_code=400, message="Invalid
message."
Stack Trace:
 /go/src/github.com/gravitational/teleport-plugins/access/mattermost/
bot.go:212 main.Bot.Broadcast
 /go/src/github.com/gravitational/teleport-plugins/access/mattermost/
app.go:274 main.(*App).broadcastMessages
 /go/src/github.com/gravitational/teleport-plugins/access/mattermost/
app.go:232 main.(*App).onPendingRequest
 /go/src/github.com/gravitational/teleport-plugins/access/mattermost/
app.go:185 main.(*App).onWatcherEvent
 /go/src/github.com/gravitational/teleport-plugins/lib/watcherjob/
watcherjob.go:228 github.com/gravitational/teleport-plugins/lib/
watcherjob.job.eventFuncHandler.func1
 /go/src/github.com/gravitational/teleport-plugins/lib/process.go:195 github.com/
gravitational/teleport-plugins/lib.jobFunc.DoJob
 /go/src/github.com/gravitational/teleport-plugins/lib/process.go:83 github.com/
gravitational/teleport-plugins/lib.NewProcess.func2.1
 /usr/local/go/src/runtime/asm_amd64.s:1371 runtime.goexit
User Message: api error status_code=400, message="Invalid message."]
request_id:a8a78041-f207-4f73-9a44-f0e5a6f233d1 request_op:put request_state:PENDING
mattermost/app.go:196

Impact

In a successful attack scenario, an attacker could prevent bot messages from being fired and carry out a
privilege escalation attack without alerting the team on the assigned channel, increasing the chances of a
successful attack.

Complexity

The attacker should own a valid session and the elevation request should also be allowed by the
account's assigned role.

Remediation

Limit the length of the request reason and enforce a limit for the whole message sent to the IM services
APIs.

 of WWW.DOYENSEC.COM20 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

The exploitation of insufficient logging and monitoring is the bedrock of nearly every major incident. A
compromised user, an insider threat, or access control failures can all be detected and recorded in case
of an extensive logging and monitoring mechanism, allowing for fast and active responses from the
security team. By design, auditable events related to access requests are only reporting basic approval
events.

During our features review, we identify a potentially dangerous lack of visibility into several actions, such
as:

• When a user assumes the role after approval or resumes her own static roles (only some entries
related to the cert generation are present in the service journal of the teleport.service);

• When an access request is deleted.

Reproduction Steps
N/A

Impact
Medium. An attacker could attempt more verbose attacks without the risk of being logged. Allowing for
vulnerability probing or snooping to continue without logs can raise the likelihood of successful
exploitation. If the audit log or the resources versioning is not detailed and extensive, it could delay
forensic analysis performed by the CSIRT and the security team's remediation actions. See TEL-Q3-8 for
an example of a malicious action that could go unnoticed.

Complexity
High. Any attacker's minimal activity would probably be logged anyway. Log data may be missing,
modified, forged, or replayed.

Remediation

The level and content of security monitoring, alerting, and reporting needs to be carefully evaluated and
should be proportional to the information security risks for a PAM solution like Teleport. Because of the
high-risk profile of the Access Workflows feature, improve the existing audit trail extending the number
of different event types that are ingested.

TEL-Q321-7. Missing Audit Trail For Some Access Request Events
Severity Low

Vulnerability Class Insecure Design

Component teleport/api/types/events.go

Status Closed

 of WWW.DOYENSEC.COM21 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Resources

• "Logging Cheat Sheet", OWASP Cheat Sheet Series
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

 of WWW.DOYENSEC.COM22 37

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

Teleport roles having the delete permission over access requests can force the deletion of all the pending
or processed past access requests. This is handled by the DeleteAccessRequest function on teleport/
lib/services/local/dynamic_access.go:249:

func (s *DynamicAccessService) DeleteAccessRequest(ctx context.Context, name
string) error {
	err := s.Delete(ctx, accessRequestKey(name))
	if err != nil {
		 if trace.IsNotFound(err) {
		 	 return trace.NotFound("cannot delete access request %q (not
found)", name)
		 }
		 return trace.Wrap(err)
	}
	return nil
}

Given that no other cascading actions are performed by the function, whenever an access request is
approved and then deleted, the promoted user will always retain the elevated role up until its expiration
period. A malicious user could delete their elevation requests while retaining access to their promoted
roles. Considering that no traces of the access request deletion are shown in the audit log (see TEL-
Q321-7) and that it is possible for a user to also suppress IM bot messages (see TEL-Q321-6), the current
design increases the effectiveness of privilege escalation attacks, leaving little to no trails.

Reproduction Steps
1. First, provide a test user with a role allowing access_request > delete:

kind: role
metadata:
 id: 1234567891234567891
 name: test
spec:
 allow:
 rules:
 - resources:
 - access_request
 verbs:
 - list

TEL-Q321-8. No Role Revocation After An Access Request Deletion
Severity Low

Vulnerability Class Insufficient Authentication and Session
Management

Component teleport/lib/services/local/dynamic_access.go

Status Closed

 of WWW.DOYENSEC.COM23 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

 - create
 - read
 - update
 - delete
deny: {}
 options:
 cert_format: standard
 enhanced_recording:
 - command
 - network
 forward_agent: true
 max_session_ttl: 30h0m0s
 port_forwarding: true
version: v3

2. Then, request and approve an access request.
3. After assuming the role, delete the access request.
4. Observe that it is still possible to use the elevated role.

Impact
Medium. An attacker can more easily carry out privilege escalation attacks without the risk of being
discovered. In some scenarios, combining this vulnerability with other design pitfalls (e.g. TEL-Q321-6
and TEL-Q321-7) could result in a higher likelihood of successful exploitation.

Complexity
High. The attacker should own a valid session for a user with delete permissions on access requests in
the first place.

Remediation

On access request deletion, immediately demote to their default static roles all active users having an
elevated role connected to the deleted access request.

 of WWW.DOYENSEC.COM24 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

Teleport's Terraform Provider can be used to initialize and configure several resources of a Teleport
installation for Cloud, Enterprise, and Open Source editions. Some of these resources can also contain
secrets such as:

• teleport_oidc_connector, specifying a client_secret, used to authenticate the client
• teleport_github_connector, specifying a client_secret, the Github OAuth app client secret
• teleport_trusted_cluster, specifying the token used as the authorization token provided by

another cluster needed by this cluster to join.
• teleport_saml_connector, specifying a private_key, the PEM encoded x509 private key used for

signing authentication requests or decrypting SAML assertions.

Storing secrets in plain text files is a bad practice which could lead among there things to users hard-
coding the credentials directly in their Terraform code and check it into version control. Other threats
include local malicious processes having read access to the file.

An implementation for sensitive values exists , but it is meant only to help prevent their display in normal 7

CLI usage and logs. It does not prevent the storage of the values in the terraform.tfstate state file , 8

and so will be visible to anyone who is able to access the state data. As advised in the terraform
documentation : 9

"Marking variables as sensitive is not sufficient to secure them. You should use secrets
management tools and secure your state in addition to marking variables as sensitive."

Reproduction Steps

Currently, the example Terraform code included in teleport-plugins/terraform/example/main.tf is
declaring all the resources providing cleartext inline secrets:

 resource "teleport_github_connector" "github" {

TEL-Q321-9. Missing Secret Management In Terraform Provider
Severity Informational

Vulnerability Class Insufficient Cryptography

Component teleport-plugins/terraform/tfschema/
types_terraform.go

Status Closed

 https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-7

output
 https://blog.gruntwork.io/how-to-manage-terraform-state-28f5697e68fa 8

 https://learn.hashicorp.com/tutorials/terraform/sensitive-variables?in=terraform/configuration-9

language

 of WWW.DOYENSEC.COM25 37

https://blog.gruntwork.io/how-to-manage-terraform-state-28f5697e68fa
https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-output
https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-output
https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-output
https://learn.hashicorp.com/tutorials/terraform/sensitive-variables?in=terraform/configuration-language
https://learn.hashicorp.com/tutorials/terraform/sensitive-variables?in=terraform/configuration-language
https://learn.hashicorp.com/tutorials/terraform/sensitive-variables?in=terraform/configuration-language
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

 metadata {
 name = "test"
 labels = {
 test = "yes"
 }
 }
 spec {
 client_id = "client"
 client_secret = "value"
 teams_to_logins {
 organization = "gravitational"
 team = "em"
 logins = ["terraform"]
 }
 }
 }

 resource "teleport_trusted_cluster" "cluster" {
 metadata {
 name = "primary"
 labels = {
 test = "yes"
 }
 }
 spec {
 enabled = false
 role_map {
 remote = "test"
 local = ["admin"]
 }
 proxy_address = "localhost:3080"
 token = "salami"
 }
 }

 resource "teleport_oidc_connector" "oidc" {
 metadata {
 name = "test"
 labels = {
 test = "yes"
 }
 }
 spec {
 client_id = "client"
 client_secret = "value"
 claims_to_roles {
 claim = "test"
 roles = ["terraform"]
 }
 }
 }

Impact
The use of a hard-coded password tremendously increases the possibility of secret leaks. This exposes
organizations using Teleport to a series of threats: a rogue employee with access to this information can
use it to break into the system, or an attacker with an arbitrary file read vulnerability may access the
Terraform code and escalate access to the provisioned Teleport infrastructure.

 of WWW.DOYENSEC.COM26 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Complexity
High. An attacker will need to access Teleport's Terraform code in order to retrieve the secrets. Depending
on how the Infrastructure code is stored, the complexity may vary.

Remediation

Warn users in the repository and in the documentation about the risk of credentials disclosure when
writing their configurations. Edit the example Terraform file in the teleport-plugins repository not to use
inline cleartext secrets.

While Terraform officially does not have plans for improved handling of secrets, multiple proposals for the
handling of sensitive values, in general, are being tracked in #9556 and #516 . Nonetheless, multiple 10 11

workarounds exist : 12

• Declaring variables for the secrets relying on Terraform’s native support for reading environment
variables.

• Defining secrets as variables in a separate .tfvars file. The secret variables can then be sourced
from a secret .tfvars file that is added to the .gitignore and typically contains all the secrets for
the Terraform project.

• Using a dedicated Terraform provider that lets you inject secrets into the Terraform code simply by
referencing a path (e.g. using commercial solutions such as HashiCorp Vault , SecretHub , AWS/13 14

GCP Secrets Manager).

 https://github.com/hashicorp/terraform/issues/9556 10

 https://github.com/hashicorp/terraform/issues/516 11

 https://blog.gruntwork.io/a-comprehensive-guide-to-managing-secrets-in-your-terraform-12

code-1d586955ace1
 https://www.vaultproject.io/docs/secrets/kv 13

 https://github.com/secrethub/terraform-provider-secrethub 14

 of WWW.DOYENSEC.COM27 37

https://www.vaultproject.io/docs/secrets/kv
https://github.com/hashicorp/terraform/issues/516
https://blog.gruntwork.io/a-comprehensive-guide-to-managing-secrets-in-your-terraform-code-1d586955ace1
https://blog.gruntwork.io/a-comprehensive-guide-to-managing-secrets-in-your-terraform-code-1d586955ace1
https://blog.gruntwork.io/a-comprehensive-guide-to-managing-secrets-in-your-terraform-code-1d586955ace1
https://github.com/hashicorp/terraform/issues/9556
https://github.com/secrethub/terraform-provider-secrethub
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

While testing the Teleport bots for the Advanced Access Workflow, Doyensec found a code path at risk of
Split API Injections. The root cause of the vulnerability is that the Mattermost bot service, unlike the Slack
one, performs HTTP requests to the Mattermost API directly by building the path components of the URL,
employing a string interpolation of the parameters. One of the code paths for these API requests
(LookupDirectChannel) also includes a user-provided string: the reviewer's email address specified by
the requester.

// LookupDirectChannel fetches user's direct message channel id by email.
func (b Bot) LookupDirectChannel(ctx context.Context, email string) (string,
error) {
	resp, err := b.client.NewRequest().
		 SetContext(context.WithValue(ctx, etagCacheCtxKey{},
getUserByEmail{email: email})).
		 SetPathParams(map[string]string{"email": email}).
		 SetResult(&User{}).
		 Get("api/v4/users/email/{email}")
	if err != nil {
		 return "", trace.Wrap(err)
	}
	user, err := userResult(resp)
	if err != nil {
		 return "", trace.Wrap(err)
	}

	me, err := b.GetMe(ctx)
	if err != nil {
		 return "", trace.Wrap(err)
	}

	resp, err = b.client.NewRequest().
		 SetContext(ctx).
		 SetBody([]string{me.ID, user.ID}).
		 SetResult(&Channel{}).
		 Post("api/v4/channels/direct")
	if err != nil {
		 return "", trace.Wrap(err)
	}
	channel, err := channelResult(resp)
	if err != nil {
		 return "", trace.Wrap(err)
	}

	return channel.ID, nil

TEL-Q321-10. API Path Injection In Mattermost Bot Calls Through
Reviewer's Email
Severity Informational

Vulnerability Class Injection Flaws (SQL, XML, Command, Path, etc)

Component teleport-plugins/access/mattermost/bot.go:277

Status Closed

 of WWW.DOYENSEC.COM28 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

}

The Mattermost bot uses the Resty HTTP client dependency (github.com/go-resty/resty/v2) to perform
such requests. While the library actually URL-encode the URL fragments in its middleware (github.com/
go-resty/resty/v2/middleware.go):

func parseRequestURL(c *Client, r *Request) error {
	// GitHub #103 Path Params
	if len(r.pathParams) > 0 {
		 for p, v := range r.pathParams {
		 	 r.URL = strings.Replace(r.URL, "{"+p+"}", url.PathEscape(v), -1)
		 }
	}
	if len(c.pathParams) > 0 {
		 for p, v := range c.pathParams {
		 	 r.URL = strings.Replace(r.URL, "{"+p+"}", url.PathEscape(v), -1)
		 }
	}
	...
}

The Mattermost API normalizes any URL-encoded slash (/) characters in the request path (%2F), allowing
for directory traversal sequences (../) to be injected:

GET /api/v4/users/email/..%2F..%2F..%2F..%2Faaa@doyensec.com HTTP/1.1
Host: gravitational-doyensec-21.cloud.mattermost.com

HTTP/1.1 301 Moved Permanently
Date: Thu, 15 Jul 2021 20:22:14 GMT
Content-Length: 0
Connection: close
Location: /aaa@doyensec.com
X-Ratelimit-Limit: 101

However, due to the very limited control over the parameters, the use of the idempotent GET verb, and the
fact that the payload must be a valid email address (see TEL-Q321-2), it is extremely difficult to exploit the
issue. At the current state, no state-changing, abusable endpoints are exposed by the Mattermost API
however the risk of abuses leveraging this design is non-negligible.

Reproduction Steps

It is possible to infer from the teleport-mattermost service journal the outcome of the request with a
successful path traversal:

• ../../../../aaa@doyensec.com should redirect (301) to a 404 error Location (Mattermost API
returns "Invalid or missing user_id in request body");

teleport-mattermost[19312]: WARN No channel to post request_id:7042853d-
f0aa-48eb-af05-109b454b9610 request_op:put request_state:PENDING mattermost/
app.go:236
teleport-mattermost[19312]: WARN Failed to lookup direct channel info: "Invalid
or missing user_id in request body." mm_user_email:../../../../aaa@doyensec.com

 of WWW.DOYENSEC.COM29 37

http://www.doyensec.com
http://github.com/go-resty/resty/v2
https://github.com/go-resty/resty/blob/v2.6.0/middleware.go#L30-L41
https://github.com/go-resty/resty/blob/v2.6.0/middleware.go#L30-L41

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

request_id:6de270d6-8c1b-4353-8075-9658c0a9c1e8 request_op:put
request_state:PENDING mattermost/app.go:352

• ../../..@doyensec.com should redirect (301) to a 200 Location (the root /);

Jul 15 20:01:59 ip-172-31-26-165 teleport-mattermost[19312]: WARN No channel
to post request_id:6de270d6-8c1b-4353-8075-9658c0a9c1e8 request_op:put
request_state:PENDING mattermost/app.go:236
Jul 15 20:02:32 ip-172-31-26-165 teleport-mattermost[19312]: WARN Failed to
lookup direct channel info: "" mm_user_email:../../..@doyensec.com
request_id:c00de998-5f83-4d14-b35f-3306d07db1a8 request_op:put
request_state:PENDING mattermost/app.go:352

• aaa@doyensec.com is the control sample for the test.

Jul 15 19:58:36 ip-172-31-26-165 teleport-mattermost[19312]: WARN Failed to
l o o k u p d i r e c t c h a n n e l i n f o : " U n a b l e t o f i n d t h e u s e r . "
mm_user_email:aaa@doyensec.com request_id:1192e1c5-8fef-4918-a071-34edc06b7409
request_op:put request_state:PENDING mattermost/app.go:352
Jul 15 19:58:36 ip-172-31-26-165 teleport-mattermost[19312]: WARN No channel
to post request_id:1192e1c5-8fef-4918-a071-34edc06b7409 request_op:put
request_state:PENDING mattermost/app.go:236

Impact

Medium. An attacker may forge authenticated requests meant for the Mattermost API. This vulnerability
is marked as Informational because Doyensec researchers could not find API endpoints in which user
input was unconstrained enough to manipulate the API request in a significant way. Additionally, the fact
that a valid email must be provided hinders the chances of a meaningful attack. Nonetheless, the current
design is dangerous and very prone to mistakes that can introduce vulnerabilities.

Complexity

Low. If a vulnerability deriving from this pattern was to be introduced, exploitation would require basic
web security skills, crafting a valid path, and reaching a sensitive Mattermost API endpoint.

Remediation

Normally, URL-encoding the user-provided values before embedding them in the request path is
enough. However, in this instance, the Mattermost API normalization must be prevented. Because of
this, a simpler approach can be implemented by forbidding or stripping URL control characters in any
passed variable (%, &, /, .., ?, =, #). This can also be accomplished by exclusively allowing a restricted set
of characters for the users' email addresses.

 of WWW.DOYENSEC.COM30 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

Similarly to the already reported TEL-Q420-15 ("Unauthenticated OOM DoS in ReadJSON"), the Gitlab 15

webhook server is using the ReadAll function from ioutil to unmarshal the request body in its
processWebhook function:

func (s *WebhookServer) processWebhook(rw http.ResponseWriter, r *http.Request,
ps httprouter.Params) {
	// TODO: figure out timeout
	ctx, cancel := context.WithTimeout(r.Context(), time.Second*5)
	defer cancel()

	httpRequestID := fmt.Sprintf("%v-%v", time.Now().Unix(),
atomic.AddUint64(&s.counter, 1))
	ctx, log := logger.WithField(ctx, "gitlab_http_id", httpRequestID)

	if contentType := r.Header.Get("Content-Type"); contentType != "application/
json" {
		 log.Errorf(`Invalid "Content-Type" header %q`, contentType)
		 http.Error(rw, "", http.StatusBadRequest)
		 return
	}
	if r.Header.Get("X-Gitlab-Token") != s.secret {
		 log.Error(`Invalid webhook secret provided`)
		 http.Error(rw, "", http.StatusUnauthorized)
		 return
	}

	body, err := ioutil.ReadAll(r.Body)
	if err != nil {
		 log.WithError(err).Error("Failed to read webhook payload")
		 http.Error(rw, "", http.StatusInternalServerError)
		 return
	}

	var event interface{}
	switch eventType := r.Header.Get("X-Gitlab-Event"); eventType {
	case "Issue Hook":
		 var issueEvent IssueEvent
		 if err = json.Unmarshal(body, &issueEvent); err != nil {
		 	 log.WithError(err).Error("Failed to parse webhook payload")
		 	 http.Error(rw, "", http.StatusBadRequest)
		 	 return
		 }

TEL-Q321-11. OOM DoS Risk in Gitlab Webhook through ReadAll
Severity Low

Vulnerability Class Denial of Service (DoS)

Component teleport-plugins/access/gitlab/
webhook_server.go:61

Status Closed

 https://goteleport.com/pdf/teleport-audit-q4-2020.pdf15

 of WWW.DOYENSEC.COM31 37

http://www.doyensec.com
https://goteleport.com/pdf/teleport-audit-q4-2020.pdf

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

		 event = issueEvent
	default:
		 log.Warningf(`Received unsupported hook %q`, eventType)
		 rw.WriteHeader(http.StatusNoContent)
		 return
	}

	if err := s.onWebhook(ctx, Webhook{Event: event}); err != nil {
		 log.WithError(err).Error("Failed to process webhook")
		 log.Debugf("%v", trace.DebugReport(err))
		 var code int
		 switch {
		 case lib.IsCanceled(err) || lib.IsDeadline(err):
		 	 code = http.StatusServiceUnavailable
		 default:
		 	 code = http.StatusInternalServerError
		 }
		 http.Error(rw, "", code)
		 return
	}

	rw.WriteHeader(http.StatusNoContent)
}

When attempting to read the request body r.Body, the function will read in the incoming JSON and
attempt to deserialize the webhook data. This results in the entire JSON being loaded into memory from a
remote network request. An attacker could abuse this implementation to load large chunks of content
into the server's memory, causing an Out-Of-Memory (OOM) error condition and the consequent forceful
restart of the webhook service.

Note that depending on the network speed of the attacker, the 5 second timeout may prevent similar
attacks to some degree.

Reproduction Steps

Source code finding only. A weaponized example of this can be reproduced adapting the reproduction
steps highlighted in TEL-Q420-15.

Impact

Depending on the attacker's network speed and on the supervisor's restart policy set up for the service,
the Gitlab webhook server could crash or be killed, leading to a considerable downtime of the service in
case of a prolonged attack.

Complexity

Medium. An attacker needs to find a way to bypass the token authentication first (either stealing the token
or leaking it using TEL-Q321-12) and issue a very large request body.

Remediation

Avoid loading arbitrary data into memory regardless of the size. Limit the size of a valid JSON tree and
return an error closing the connection when it consumes a substantial amount of memory, especially for

 of WWW.DOYENSEC.COM32 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

remote endpoints exposed to untrusted parties.

An example of a secure implementation from golang.org/x/crypto/acme/acme.go is shown below:

func (c *Client) responseCert(ctx context.Context, res *http.Response, bundle 	
bool) ([][]byte, error) { 	
	b, err := ioutil.ReadAll(io.LimitReader(res.Body, maxCertSize+1)) 	
	if err != nil { 	
		 return nil, fmt.Errorf("acme: response stream: %v", err) 	
	} 	
	if len(b) > maxCertSize { 	
		 return nil, errors.New("acme: certificate is too big") 	
	} 	
... 	
}

Resources

• "Be careful with ioutil.ReadAll in Golang", Haisum Bhatti
https://haisum.github.io/2017/09/11/golang-ioutil-readall/

 of WWW.DOYENSEC.COM33 37

https://haisum.github.io/2017/09/11/golang-ioutil-readall/
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Description

While inspecting the use of ReadAll across the scoped sections of the teleport-plugins repository,
Doyensec incidentally found that the Gitlab webhook function (processWebhook) is performing an
insecure comparison.

Insecure comparison, or byte-by-byte comparison, fails and returns as soon as it encounters two bytes
that do not match. Timing oracles leak information to an attacker, facilitating byte-by-byte brute-forcing of
data such as usernames, passwords, and others.

For further reference, there is research on measuring nanosecond long timing differences over the
internet in timing attack scenarios such as the one described above . 16

Reproduction Steps

The processWebhook function executes the following code to do the actual comparison:

func (s *WebhookServer) processWebhook(rw http.ResponseWriter, r *http.Request,
ps httprouter.Params) {
	// TODO: figure out timeout
	ctx, cancel := context.WithTimeout(r.Context(), time.Second*5)
	defer cancel()

	...

	if r.Header.Get("X-Gitlab-Token") != s.secret {
		 log.Error(`Invalid webhook secret provided`)
		 http.Error(rw, "", http.StatusUnauthorized)
		 return
	}

	...
}

Impact

High. Cryptographically insecure string comparisons are oracles for malicious actors. This opens a vector
to brute force the webhook secret value.

TEL-Q321-12. Insecure Comparison Of Gitlab Webhook Token
Severity Low

Vulnerability Class Insufficient Cryptography

Component teleport-plugins/access/gitlab/
webhook_server.go:74

Status Closed

 https://codahale.com/a-lesson-in-timing-attacks/ 16

 of WWW.DOYENSEC.COM34 37

https://codahale.com/a-lesson-in-timing-attacks/
http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Complexity

High. This attack is very noisy and requires a lot of requests and responses to measure both latency and
response time.

Remediation

Perform a constant-time comparison on the provided webhook secret.

A built-in way of doing constant time string comparison in Go is by using the ConstantTimeCompare 17

function of the crypto/subtle package. ConstantTimeCompare returns 1 if the two equal length slices, 18

x and y, have equal contents.

The time taken is a function of the length of the slices and is independent of the contents. Note that it is
also important to use subtle.ConstantTimeEq to compare the lengths of the slices due to the caveat
that subtle.ConstantTimeCompare needs "two equal length slices”.

 if subtle.ConstantTimeCompare(r.Header.Get("X-Gitlab-Token"), s.secret) {
		 log.Error(`Invalid webhook secret provided`)
		 http.Error(rw, "", http.StatusUnauthorized)
		 return
 }

You may need to convert both strings to a byte slice in order to use ConstantTimeCompare.

Resources

• Coda Hale, “A Lesson In Timing Attacks”
https://codahale.com/a-lesson-in-timing-attacks/

• Morgan, Timothy D. & Jason W., ”Web Timing Attacks Made Practical"
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-
wp.pdf

 http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare 17

 http://golang.org/pkg/crypto/subtle/ 18

 of WWW.DOYENSEC.COM35 37

http://golang.org/pkg/crypto/subtle/
http://www.doyensec.com
https://codahale.com/a-lesson-in-timing-attacks/
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Class

Components With Known Vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References (IDOR)

Insufficient Authentication and Session Management

Insufficient Authorization

Insufficient Cryptography

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Condition

Security Misconfiguration

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

User Privacy

Time-of-Check to Time-of-Use (TOCTOU)

Insecure Deserialization

 of WWW.DOYENSEC.COM36 37

http://www.doyensec.com

Gravitational, Inc. (DBA Teleport) - Security Auditing Report

Appendix B - Remediation Checklist
The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest, Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if you’d like more information on our retesting process.

☑ Completely sanitize the user-provided message placing the request reason inside a code block
with tilde or back-tick characters, escaping any existing ones. Alternatively allow only a restricted
set of characters for basic formatting.

☑ Instead of updating the RegEx for the email validation, we recommend using a dedicated
validation library, which supports correct email validation.

☑ To mitigate the risk, implement a session revocation feature for role elevations, initiated through
the web or the console.

☑ Prevent or warn about potential escalations, either on role creations/edit or on elevation
approval.

☑ Limit the length and the charset of the requesters' reasons (e.g. /^[\w @\/()]{0,60}$/).

☑ Limit the length of the request reason and enforce a limit for the whole message sent to the IM
services APIs.

☑ Because of the high-risk profile of the Access Workflows feature, improve the existing audit trail
extending the number of different event types ingested.

☑ On access request deletion, immediately demote to their default static roles all active users
having an elevated role connected to the deleted access request.

☑ Warn users in the repository and in the documentation to take care when writing their
configurations to avoid unnecessary credential disclosure. Edit the example Terraform file in the
teleport-plugins repository to not use inline cleartext secrets.

☑ Normally URL-encoding all the user-provided values before embedding them in the request path
is enough. However, in this instance, the Mattermost API normalization must be prevented

☑ Avoid loading arbitrary data into memory regardless of the size. Limit the size of a valid JSON
tree and return an error closing the connection when it consumes a substantial amount of
memory, especially for remote endpoints exposed to untrusted parties.

☑ Perform a constant-time comparison on the provided webhook secret.

 of WWW.DOYENSEC.COM37 37

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist

