
TODO

 WWW.DOYENSEC.COM	 	 © DOYENSEC

Security Auditing Report
Canary Tokens OSS

Prepared for: Thinkst Applied Research
Prepared by: Viktor Chuchurski, Francesco Lacerenza
Date: 07/22/2024

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Table of Contents
Table of Contents	 1

Revision History	 2

Contacts	 2

Executive Summary	 3

Methodology	 5

Source Code Auditing	 5

Project Findings	 7

Appendix A - Vulnerability Classification	 28

Appendix B - Remediation Checklist	 29

 of WWW.DOYENSEC.COM1 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 29

Version Date Description Author

1 04/29/2024 First release of the final report
Viktor Chuchurski,

Francesco Lacerenza

2 04/30/2024 Peer review Luca Carettoni

3 07/19/2024 Retesting Viktor Chuchurski

4 07/22/2024 Peer review before external publication Anthony Trummer

Company Name Email

Thinkst Applied Research Marco Slaviero marco@thinkst.com

Doyensec, LLC John Villamil john@doyensec.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

http://www.doyensec.com
mailto:marco@thinkst.com
mailto:john@doyensec.com
mailto:luca@doyensec.com

Thinkst Applied Research - Security Auditing Report

Executive Summary

Overview

Thinkst Applied Research engaged Doyensec to
perform a security assessment of their Canary
Tokens OSS. The project commenced on
04/22/2024 and ended on 04/26/2024 requiring
two (2) security researchers. The project resulted
in nine (9) findings of which one (1) was rated as
medium severity.

The project consisted of a manual web
application security assessment.

Testing was conducted remotely from Doyensec's
EMEA and US offices.

Scope

Through meetings with Thinkst Applied Research
the scope of the project was clearly defined. The
agreed upon assets are listed below:

• https://<REDACTED>.com
• https://<REDACTED>.net

The testing took place in a testing environment
using the latest version of the software at the
time of testing. In detail, this activity was
performed on the following releases:

• canarytokens
• 846c6a063a008042627de189f673a7efc4

7c7d40
• canarytokens-docker
• 684069b02959a58e7276de14f34e142020

79e6ac

Scoping Restrictions

During the engagement, Doyensec did not
encounter any difficulties in testing the
application.

The Thinkst team was very responsive in
debugging the issues that surfaced during the
test, ensuring a smooth assessment.

Findings Summary

Doyensec researchers discovered and reported
nine (9) vulnerabilities in the Canary Token OSS
component.

While most of the issues were departures from
best practices and low-severity flaws, Doyensec
identified one (1) issue rated as medium severity.

It is important to reiterate that this report
represents a snapshot of the environment’s
security posture at a point in time.

The findings included the possibility to exploit
different types of denial of service attacks. The
worst case reported involved the exploitation of a
known issue in the “python-multipart” library
(CAN-Q224-1) to block the service. Moreover, best
practices and least privilege principle violations
(CAN-Q224-2, CAN-Q224-3) were reported in the
AWS tokens infrastructure. Finally, low-impact
Cross-Site-Scripting (XSS) vulnerabilities (CAN-
Q224-5, CAN-Q224-6) were identified in multiple
canaries.

Overall, the security posture of the Internet-facing
APIs was found to be in line with industry best
practices.

Recommendations

The following recommendations are proposed
based on studying Thinkst’s security posture and
the vulnerabilities discovered during this
engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

 of WWW.DOYENSEC.COM3 29

http://www.doyensec.com
https://%3CREDACTED%3E.com
https://%3CREDACTED%3E.net
https://github.com/thinkst/canarytokens
https://github.com/thinkst/canarytokens-docker

Thinkst Applied Research - Security Auditing Report

Long-term improvements

• As per the current threat model, the analyzed
OSS is applying canary-based authentication,
leaving unauthenticated access to the
dashboard and the canaries creation
operation. The tests evidenced multiple
issues exploitable against the dashboard
during the creation step (see CAN-Q224-9,
CAN-Q224-8 and CAN-Q224-7). Implement
additional opt-in authorization mechanisms to
protect features in the dashboard related to
limited resources or SSRF opportunities

 of WWW.DOYENSEC.COM4 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key to standing
against threats. Thus we recommend a white-box
approach combining dynamic fault injection with
an in-depth study of the source code to maximize
the ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g., OWASP
Testing guide recommendations), as well as
custom checklists, to ensure full coverage of both
code and vulnerability classes.

Setup Phase

Thinkst Applied Research provided access to the
online environment and access to relevant source
code repositories via GitHub.

In addition to the online environment, Doyensec
compiled and ran the application locally, using
instructions in the repository itself.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:
• Burp Suite
• VisualStudio Code
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered on the data sent
between clients and servers. In this realm, the
principle audit tool is Burp Suite. However, we
also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

Source Code Auditing
Source code reviews are critical to understand the
true state of our clients’ applications. Removing
the layers of abstraction and focusing on the raw
application code allows us to obtain an
unobstructed view of vulnerabilities, which could
otherwise go undetected. Unlike black-box testing,
which can be impeded by things like network
equipment, security devices and services, rate
limits, hard to find routes or inputs, code
obfuscation and/or minimization and the fear of
creating downtime, source code reviews reveal
the true software quality. This gives our clients the

 of WWW.DOYENSEC.COM5 29

http://www.doyensec.com
https://portswigger.net/burp/

Thinkst Applied Research - Security Auditing Report

confidence to deploy their software anywhere,
knowing we’ve found the hidden vulnerabilities.

We pride ourselves on hiring engineers who not
only break applications, but have experience
building them as well. This differentiates
Doyensec from many other consulting firms, as it
al lows us to immerse ourselves in the
applications we test and create a more
comprehensive threat model, ultimately revealing
more impactful issues and in greater numbers.

Our methodology consists of several stages
outlined in the table below. During this process,
we typically begin by thoroughly reviewing the
code to understand the composition of the
application, its uses, data flows and its
authentication and authorization structures. This
provides the context needed to evaluate any
potential bugs we might encounter in later steps.

Next, we use our custom threat model to trace
inputs through the code and look for problem
areas. These could be anything from typical bugs
l i ke in jec t ion s ty le vu lnerab i l i t i es and
authorization bypasses, or subtle business-logic
flaws and unsafe function usages, which are not
as easily detected via automation. We also
examine the frameworks used within the
application to ensure they are configured as
securely as possible for the given context.

Only once we really understand the application,
will we deploy our custom scripts, created by our
team over many years of experience. These parse
the code and identify hotspots, where we have
seen vulnerabilities manifested in the past. Our
scripts typically identify coding errors and
misconceptions about functionality during
development and are the product of bespoke
security research by our team.

Finally, we leverage a curated set of customized
open-source tools to complete our analysis. We
start with those specifically designed for the
application’s languages and components,
eventually moving into more generalized tools.
After assessing the application with these tools,
we manually validate any findings they report and

filter out the noise, delivering only actionable
results to our clients.

 of WWW.DOYENSEC.COM6 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Project Findings
The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

This table is organized by time of discovery. The issues at the top were found first, while those at the
bottom were found last. Presenting the table in this fashion has a number of benefits. It inherently shows
the path our auditing took through the target and may also reveal how easy or difficult it was to discover
certain findings. As a security engagement progresses, the researchers will gain a deeper understanding
of a target which is also shown in this table.

Findings Recap Table

ID Title Vulnerability Class Severity Status

CAN-Q224-1 ReDoS via Outdated python-
multipart Library

Denial Of Service
(DoS) Medium Closed

Comment The issue was mitigated by updating the vulnerable library to the latest version.

CAN-Q224-2
Overprivileged

AWSProcessTokenLogsRole
Lambda Role

Insecure Design Low Closed

Comment
The AWSProcessTokenLogsRole role was updated to allow decryption of specific AWS

resources only.

CAN-Q224-3 Unencrypted Lambda
Environment Variables Insecure Design Informational Risk

Accepted

Comment
Risk was accepted.

Thinkst’s comment: “The Lambda function runs in a single-purpose AWS account,
limiting the impact of unauthorized access to unencrypted environment variables.”

CAN-Q224-4 Missing Authorization in
create_user_api_tokens

Insufficient
Authorization Informational Risk

Accepted

Comment
Risk was accepted.

Thinkst’s comment: “The Lambda function is accessible through a random hostname,
making discoverability and direct access difficult for attackers.”

CAN-Q224-5 Stored Cross-Site Scripting
on "Cloned Site" Token

Cross-Site
Scripting (XSS) Low Closed

Comment The issue was present in the application’s old UI, which is no longer available.

CAN-Q224-6 Stored Cross-Site Scripting in
"Slow Redirect" Token Page

Cross-Site
Scripting (XSS) Informational Closed

 of WWW.DOYENSEC.COM7 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Comment The issue has been mitigated by forcing the HTTP(S) protocol for redirect URLs.

CAN-Q224-7
Potential Denial of Service via
Unlimited Creation of “AWS”

Canary Tokens
Denial Of Service

(DoS) Low Risk
Accepted

Comment
Risk was accepted.

Thinkst’s comment: Addressing the issue would require introducing “… a complex user
model, which will introduce significantly more risk to us…”

CAN-Q224-8
Potential Denial of Service via

Unlimited Creation of “Web
Image” Canary Tokens

Denial Of Service
(DoS) Low Risk

Accepted

Comment
Risk was accepted.

Thinkst’s comment: Addressing the issue would require introducing “… a complex user
model, which will introduce significantly more risk to us…”

CAN-Q224-9 Blind SSRF via Token
Webhook

Server-Side
Request Forgery Low Closed

Comment The SSRF was mitigated by updating the application to use the “advocate” library to
make HTTP requests.

ID Title Vulnerability Class Severity Status

 of WWW.DOYENSEC.COM8 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM9 29

Critical

High

Medium

Low

Informational 3

5

1

0

0

Denial of Service (DoS)

Cross-Site Scripting (XSS)

Insecure Design

Insufficient Authorization

Server-Side Request Forgery (SSRF) 1

1

2

2

3

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

While reviewing the Canary Tokens OSS source code, Doyensec discovered some dependencies are
affected by known vulnerabilities. More specifically, the “python-multipart” dependency was found to be 1

affected by a regular expression (Regex) denial-of-service (DoS) attack or ReDoS.

Namely, parsing additional parameters supplied via the value of the Content-Type HTTP header will lead
to the library using a vulnerable regex. If a malicious value is supplied, the library will try to match the
value using the vulnerable regex, which will exhaust system resources causing the application to stall.

Reproduction Steps
To verify the issue, make the following HTTP request to the application:

POST /d3aece8093b71007b5ccfedad91ebb11/generate HTTP/1.1
Host:<REDACTED>.com
Content-Type: application/x-www-form-urlencoded

email=viktor%2b1%40gmail.com&webhook_url=http%3a//
<REDACTED>.com%3ffast&redirect_url=http%3a//
<REDACTED>.com%3fredirect&memo=123&token_type=fast_redirect

Note the time it takes for the application server to respond. Next, reply to the same request with the
following Content-Type header value:

Content-Type: application/x-www-form-urlencoded; !="\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\

Note that the time to produce a response has significantly increased. During testing, the above payload
resulted in a 5 second response time. That can be further increased by adding more back-slashes (\) to
the header value.

CAN-Q224-1. ReDoS via Outdated “python-multipart” Library
Severity Medium

Vulnerability Class Denial of Service (DoS)

Component Application Dependencies

Status Closed

 https://github.com/Kludex/python-multipart1

 of WWW.DOYENSEC.COM10 29

https://github.com/Kludex/python-multipart
http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Impact
Medium. If an attacker gains access to the application, abusing this issue will allow them to perform a
denial-of-service attack on the system. The attack will use a large amount of the system’s resources,
rendering it unresponsive and unable to process canary token callbacks.

In extreme cases, the attack may lead to a full system crash.

Complexity
Low. Successful exploitation only requires access to the application and basic knowledge of web
application security. Because the application’s source code is public, discovering the vulnerability is also
trivial. Overall, we consider the complexity to be low.

Remediation

Update the “python-multipart” dependency to the latest secure version.

To mitigate the vulnerability, update the “python-multipart” library to the latest know secure version. At the
time of testing, that is version 0.0.9.

Resources	

• Google, “OSV Scanner”
https://github.com/google/osv-scanner

• Kludex-GitHub Advisory, “Content-Type Header ReDoS”,
https://github.com/Kludex/python-multipart/security/advisories/GHSA-2jv5-9r88-3w3p

 of WWW.DOYENSEC.COM11 29

http://www.doyensec.com
https://github.com/google/osv-scanner
https://github.com/Kludex/python-multipart/security/advisories/GHSA-2jv5-9r88-3w3p

Thinkst Applied Research - Security Auditing Report

Description

Implementing the principle of least privilege, for roles and policies used by service instances in an
infrastructure, is crucial for security. Roles and policies are typically used by AWS services, EC2 instances,
Lambda functions, and other resources to access other AWS resources and services, while
accomplishing tasks dictated by internal application logic.

The AWSProcessTokenLogsRole role was defined with permissions that extend beyond its immediate
operational requirements, thus introducing unnecessary risk to the system.

In particular, the role has the kms:Decrypt permission on any (“*”) resource, hence allowing arbitrary
decryption within the account.

As a result, a potential attacker who compromises the reported roles or users will be able to execute any
possible action, in the targeted environment, by exploiting the escalation patterns. Consequently, the
privacy and integrity of sensitive data and the platform availability could be fully compromised.

Reproduction Steps
N/A. This is a source code finding.

Impact
High. An attacker with AWS IAM knowledge could easily exploit the loose permission to exfiltrate other
keys in the infrastructure.

Complexity
High. As currently implemented, the attacker is more likely to be an internal threat actor.

Remediation

We recommend applying resource limitation on the kms:Decrypt operation on the
AWSProcessTokenLogsRole role. New canary keys should be either tagged or named to restrict their
namespace within the role. By doing so, the role will not be exploitable to decrypt arbitrary KMS objects in
the account.

CAN-Q224-2. Overprivileged AWSProcessTokenLogsRole Lambda Role
Severity Low

Vulnerability Class Insecure Design

Component canarytokens-Feature_branch_New_UI/aws-token-
infra/awsid.tf:336

Status Closed

 of WWW.DOYENSEC.COM12 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

Lambda functions often utilize environment variables to store sensitive configuration information such as
API keys, database credentials, or other secrets. However, it has been observed that some environment
variables within Lambda functions are stored without encryption, posing a significant security risk.
Unencrypted environment variables can be exposed, potentially leading to data breaches or unauthorized
access to critical resources.

In particular, the AWS lambda function CreateUserAPITokens stores the SLACK_WEBHOOK_URL as an
environment variable with default encryption settings.

As a security best practice, variables containing secrets should be encrypted with a custom AWS KMS
key and with encryption in transit enabled.

Reproduction Steps
The exposure of the environment variables can be confirmed from any AWS user with
GetFunctionConfiguration capabilities.

Example command:

❯ aws lambda get-function-configuration --function-name CreateUserAPITokens --region
us-east-1
{
 "FunctionName": "CreateUserAPITokens",
 "FunctionArn": "arn:aws:lambda:us-east-1:<REDACTED>:function:CreateUserAPITokens",
 "Runtime": "python3.9",
 "Role": "arn:aws:iam::<REDACTED>:role/AWSTokenRole",
 "Handler": "lambda_function.lambda_handler",
 "CodeSize": 1508,
 "Description": "",
 "Timeout": 60,
 "MemorySize": 128,
 "LastModified": "2024-04-23T15:45:20.000+0000",
 "CodeSha256": "9Sr/G3hUpMJBgBWk24Drq0Av2wPjB8qmPU+Uq2jllbM=",
 "Version": "$LATEST",
 "Environment": {
 "Variables": {
 "SLACK_WEBHOOK_URL": “REDACTED_PLAINTEXT_WEBHOOK”
 }

CAN-Q224-3. Unencrypted Lambda Environment Variables
Severity Informational

Vulnerability Class Insecure Design

Component AWS Lambda
CreateUserAPITokens

Status Risk Accepted

 of WWW.DOYENSEC.COM13 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Impact
Medium. An attacker compromising the lambda execution or an internal threat actor with
GetFunctionConfiguration capabilities could read the plaintext environment variables, exposing the
Slack webhook.

Complexity
High. The attacker needs to either be able to exploit the function and obtain RCE or be an internal actor
with GetFunctionConfiguration permissions.

Remediation

As an infrastructure security best practice, AWS Secrets Manager with a custom key and encryption in
transit should be applied while storing sensitive environment variables.

Resources	

• Amazon Web Services, “Securing environment variables”
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

 of WWW.DOYENSEC.COM14 29

http://www.doyensec.com
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

Thinkst Applied Research - Security Auditing Report

Description

API Gateway functions often serve as entry points for various services and applications, and without
adequate authorization controls, they become vulnerable to unauthorized access by malicious actors. In
the token infrastructure, an AWS API Gateway function was deployed without proper authorization
mechanisms in place, allowing unauthorized access.

See the definition for the create_user_api_tokens endpoint at canarytokens/aws-token-infra/
awsid.tf:149

[REDACTED]…
resource "aws_api_gateway_method" "create_user_api_tokens" {
 rest_api_id = aws_api_gateway_rest_api.create_user_api_tokens.id
 resource_id = aws_api_gateway_resource.create_user_api_tokens.id
 http_method = "ANY"
 authorization = "NONE"
}

The missing authorization allows external attackers to call the endpoint and potentially exhaust the AWS
keys quota as described in CAN-Q224-7.

Reproduction Steps
N/A

Impact

Medium. The attacker could abuse the function to exhaust the number of AWS Keys in the account, de
facto preventing the creation of new legit users.

Complexity

High. The attacker needs to be able to enumerate, guess, or exfiltrate the actual AWS Gateway URL for the
unauthorized function.

CAN-Q224-4. Missing Authorization in create_user_api_tokens
Severity Informational

Vulnerability Class Insufficient Authorization

Component canarytokens/aws-token-infra/awsid.tf:149

Status Risk Accepted

 of WWW.DOYENSEC.COM15 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Remediation

Utilize authentication mechanisms such as AWS Identity and Access Management (IAM) policies, API
keys, AWS Cognito, or OAuth tokens to authenticate and authorize users accessing the API Gateway
function.

Resources	

• Amazon Web Services, “Controlling and managing access to a REST API in API Gateway”
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-
api.html

 of WWW.DOYENSEC.COM16 29

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

Cross-Site Scripting (also referred to as XSS) occurs when a web application accepts malicious code
(usually JavaScript) as input from an attacker, which is subsequently executed in a victim’s browser. Since
the browser executes the code in the victim’s session context, it allows the attacker to access any
cookies or session data retained by the browser. It is also possible to hijack the browser itself. The
attacker may also modify arbitrary content on the page presented to the user. The attack is possible
because a browser, by default, cannot distinguish between the malicious code mentioned above and
legitimate code from the web server.

When the application accepts and saves an attacker's payload to persistent storage, which can later be
served to victims through normal usage of the application, we categorize the vulnerability as stored XSS
(as opposed to reflected). In this particular case, the attack may target any user of the platform who can
see the malicious content. For this reason, we consider the vulnerability's severity higher than in the
reflected case.

When a “cloned website” canary token’s details are displayed on the application’s old UI, the following
code is used to place the generated canary JavaScript code in its HTML container:

$('#result_cloned_website_obfuscated')
 .append(obfuscateClonedWebJs(decodeClonedSiteJs(`{{canarydrop.get_cloned_site_j
avascript(force_https)}}`)));

This snippet is part of a Jinja template (canarytokens/templates/manage_new.html) used to render the
entire web page. The canary JavaScript is rendered on the page using the double bracket ({{) directive,
which will perform appropriate output HTML encoding. However, the JavaScript is rendered in a script
tag context, making the applied encoding irrelevant and allowing for XSS.

Reproduction Steps
Use the following steps to reproduce the issue:

1. Navigate in the application and choose to create a new “Cloned Website” token
2. Supply any.domain`+alert(document.location)+` as the cloned website’s URL and verify that

the token was successfully created
3. Navigate to the token’s management page
4. Verify that an alert dialog was shown with the domain of the application

CAN-Q224-5. Stored Cross-Site Scripting on "Cloned Website" Token
Severity Low

Vulnerability Class Cross-Site Scripting (XSS)

Component canarytokens/templates/manage_new.html:743

Status Closed

 of WWW.DOYENSEC.COM17 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Impact

Low. If successfully exploited, the issue can allow malicious JavaScript code to be executed in the
context of the victim’s sessions. Since the attack does not require user interaction, apart from visiting the
token’s management page, we consider the severity as higher than the reflected case.

While arbitrary JavaScript execution will allow the attacker to view the token’s history, and in specific
scenarios allow them to delete or disable the token, as the creator of the token, they would already have
access to that functionality. Overall, we consider the impact to be low.

Complexity

Medium. Finding and exploiting the issue requires basic knowledge of web application security. The open
source nature of the application significantly increases the likelihood of discovering the vulnerability.

Successful exploitation also requires a degree of social engineering to get the victim to navigate to the
malicious token’s page. One way of doing this is by supplying the victim’s email when creating the token
and subsequently triggering it. This will result in an email with a link to the token’s page being emailed to
the victim. The email will be sent by the application itself, increasing the likelihood of the being visited.

Overall, we consider the complexity to be low to medium.

Remediation

XSS vulnerabilities can only be prevented with a combination of:

• Context-aware output escaping/encoding,
• Strict user input validation and sanitization, filtering meta-characters from user input, 2

• Validating that URLs dynamically created using user-controlled data, (e.g., HREF, IFRAME, etc.) only
allow the intended schemes (e.g., http:, https:) and forbid specifying the javascript: scheme,

• Proper implementation and configuration of the Content Security Policy,
• Proper implementation of the X-XSS-Protection header, and/or
• Setting the HTTPOnly flag on sensitive cookies

Perform input validation and the appropriate output encoding on the clonedsite parameter.

In this particular scenario, on the application level, the vulnerability can be mitigated in multiple ways:

• Implement URL validation on the “cloned website” parameter, and reject any invalid values
• Implement appropriate output encoding for the JavaScript context using Jinja’s “tojson” filter 3

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet2

 https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.tojson3

 of WWW.DOYENSEC.COM18 29

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.doyensec.com
https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.tojson

Thinkst Applied Research - Security Auditing Report

Resources	

• OWASP, "Cross-site Scripting (XSS)”
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

• OWASP, “XSS Prevention Cheat Sheet"
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/
DOM_based_XSS_Prevention_Cheat_Sheet.md

 of WWW.DOYENSEC.COM19 29

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

Cross-Site Scripting (also referred to as XSS) occurs when a web application accepts malicious code
(usually JavaScript) as input from an attacker, which is subsequently executed in a victim’s browser. Since
the browser executes the code in the victim’s session context, it allows the attacker to access any
cookies or session data retained by the browser. It is also possible to hijack the browser itself. The
attacker may also modify arbitrary content on the page presented to the user. The attack is possible
because a browser, by default, cannot distinguish between the malicious code mentioned above and
legitimate code from the web server.

When the application accepts and saves an attacker's payload to persistent storage, which can later be
served to victims through normal usage of the application, we categorize the vulnerability as stored XSS
(as opposed to reflected). In this particular case, the attack may target any user of the platform who can
see the malicious content. For this reason, we consider the vulnerability’s severity higher than in the
reflected case.

The “slow redirect” canary token generates a webpage which will ultimately navigate the user to a user-
supplied URL. Navigation is performed by the following snippet:

{% if redirect_url %}
window.location = '{{redirect_url}}';
{% endif %}

The value of the redirect_url doesn’t undergo any input validation and is rendered on the page using
HTML output encoding, which is incorrect within a script tag context. This allows for arbitrary JavaScript
code to be supplied and executed - then the token is triggered.

Reproduction Steps
Use the following steps to reproduce the issue:

1. Navigate in the application and choose to create a new “Slow Redirect” token
2. Supply javascript:alert(document.location) as the redirect URL and verify that the token

was successfully created
3. Navigate to the token’s canary URL
4. Verify that an alert dialog was shown with the domain of the application

CAN-Q224-6. Stored Cross-Site Scripting in "Slow Redirect" Token Page
Severity Informational

Vulnerability Class Cross-Site Scripting (XSS)

Component canarytokens/templates/
browser_scanner.html:501

Status Closed

 of WWW.DOYENSEC.COM20 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Impact

N/A

Complexity

Low. Access to the application and basic knowledge of web application security is required to find and
exploit this issue. The open source nature of the application significantly increases the likelihood of
discovering the vulnerability.

Remediation

XSS vulnerabilities can only be prevented with a combination of:

• Context-aware output escaping/encoding,
• Strict user input validation and sanitization, filtering meta-characters from user input, 4

• Validating that URLs dynamically created using user-controlled data, (e.g., HREF, IFRAME, etc.) only
allow the intended schemes (e.g., http:, https:) and forbid specifying the javascript: scheme,

• Proper implementation and configuration of the Content Security Policy,
• Proper implementation of the X-XSS-Protection header, and/or
• Setting the HTTPOnly flag on sensitive cookies

Perform input validation and the appropriate output encoding on the redirect_url parameter.

In this particular scenario, on the application level, the vulnerability can be mitigated in multiple ways:

• Implement URL validation on the “cloned website” parameter, and reject any invalid values
• Implement appropriate output encoding for the JavaScript context using Jinja’s “tojson” filter 5

Resources	

• OWASP, "Cross-site Scripting (XSS)”
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

• OWASP, “XSS Prevention Cheat Sheet"
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/
DOM_based_XSS_Prevention_Cheat_Sheet.md

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet4

 https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.tojson5

 of WWW.DOYENSEC.COM21 29

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.tojson
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

As described in the Canary documentation:

The AWS API token provides you with a set of AWS API keys. Leave them in private
code repositories, leave them on a developer's machine, or anywhere else API keys
would be expected. An attacker who stumbles onto them will believe they are the
keys to your cloud infrastructure. If they are used via the AWS API at any point,
you will be alerted.

According to the current threat model, Canary tokens creation is not restricted and the dashboard is
exposed as an unauthenticated service. Consequently, the creation of AWS keys could easily reach the
limit allowed for the AWS quota, set by the customer or Thinkst, in the account setup.

As a result, an attacker with access to the public dashboard could exhaust the AWS keys for the account
and prevent the creation of legitimate canaries or users’ keys for the target account.

Reproduction Steps
In order to exhaust the quota limit, it is sufficient to automate the creation of AWS Canary Keys. As an
example, it would be sufficient to use the Intruder functionality of Burp Suite Proxy.

Since the testing environment was linked to the production AWS account used by Thinkst, Doyensec did
not reproduce it to avoid availability issues for the legitimate users.

Impact

Medium. Attackers can prevent legitimate users from obtaining a valid key or AWS key canary.

Complexity

Low. It is sufficient to find the exposed Canary dashboard (unauthenticated) and automate the creation of
AWS key canaries. Basic web hacking skills are required.

CAN-Q224-7. Potential Denial of Service via Unlimited Creation of “AWS”
Canary Tokens
Severity Low

Vulnerability Class Denial of Service (DoS)

Component AWS Keys Canary

Status Risk Accepted

 of WWW.DOYENSEC.COM22 29

http://www.doyensec.com
https://help.canary.tools/hc/en-gb/articles/360013002617-How-do-I-create-an-AWS-API-Key-Canarytoken
https://portswigger.net/burp/documentation/desktop/tools/intruder

Thinkst Applied Research - Security Auditing Report

Remediation

Provide an option to restrict the number of AWS Key tokens.

Consider providing an option for users to configure a limit of the token type or a secret key to be
submitted during the creation. Requiring a configurable secret key to create tokens could be applied to
other canaries with limited resources (see CAN-Q224-8).

Resources	

• Amazon Web Services, “IAM and AWS STS quotas”
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

 of WWW.DOYENSEC.COM23 29

http://www.doyensec.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

Thinkst Applied Research - Security Auditing Report

Description

When a user creates a new “Web Image” canary token, they are prompted to upload an image file. The
application will perform validation on the uploaded file, verifying that it has one the the allowed file
extensions and that its size is lower than the application’s pre-configured limit:

if len(filebody) > frontend_settings.MAX_UPLOAD_SIZE:
 max_size = str(frontend_settings.MAX_UPLOAD_SIZE / (1024 * 1024))
 raise HTTPException(
 status_code=400,
 detail=f"File too large. File size must be < {max_size} MB.",
)

If the file passes validation, it is stored on disk under a random file path. While required in the creation
request, the file is not used for creating or triggering the token.

The lack of any upper limits on the number of “Web Image” tokens created or the number of images
stored, can allow attackers to create a large number of tokens, filling up the application’s disk space,
rendering the application unresponsive and potentially unable to create new tokens, due to a lack of
memory.

Reproduction Steps
The issue can be replicated by replaying the “Web Image” token creation request a large number of times
and verifying that all images have been stored on disk and no limit on the number of created tokens was
reached:

POST /d3aece8093b71007b5ccfedad91ebb11/generate HTTP/1.1
Host:<REDACTED>.com
Content-Type: multipart/form-data;
boundary=---------------------------279696661313754475963624687173

-----------------------------279696661313754475963624687173
Content-Disposition: form-data; name="email"

viktor+1@doyensec.com
-----------------------------279696661313754475963624687173
Content-Disposition: form-data; name="webhook_url"

CAN-Q224-8. Potential Denial of Service via Unlimited Creation of “Web
Image” Canary Tokens
Severity Low

Vulnerability Class Denial of Service (DoS)

Component canarytokens/frontend/app.py:1534, :1607

Status Risk Accepted

 of WWW.DOYENSEC.COM24 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

<WEBHOOK_ADDRESS>
-----------------------------279696661313754475963624687173
Content-Disposition: form-data; name="memo"

demo_memo
-----------------------------279696661313754475963624687173
Content-Disposition: form-data; name="web_image"; filename="duckie.jpg"
Content-Type: image/jpeg

<IMAGE CONTENTS>
-----------------------------279696661313754475963624687173
Content-Disposition: form-data; name="token_type"

web_image
-----------------------------279696661313754475963624687173--

Impact

Potentially high. If successfully exploited, flooding the application with a large number of uploads will fill
up its disk space. In the scenario where the disk is full, the application may become unable to process
incoming token callbacks.

Complexity

High. While performing the attack only required access to the application, successful exploitation is
based on the pre-defined file size limits and the disk space allocated to the application.

Remediation

Provide an option to limit the number of created “Web Image” tokens.

Consider providing an option for users to configure an upper limit of created “Web Image” tokens, which
will allow them to protect themselves against any denial-of-service attempts.

Resources	

• Cloudflare, “What is a denial-of-service (DoS) attack?”
https://www.cloudflare.com/en-gb/learning/ddos/glossary/denial-of-service

 of WWW.DOYENSEC.COM25 29

https://www.cloudflare.com/en-gb/learning/ddos/glossary/denial-of-service
http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Description

A Server Side Request Forgery (SSRF) attack describes the ability of an attacker to create network
connections from a vulnerable web application to the internal network and other Internet hosts.
Frequently, an SSRF vulnerability is used to attack internal services located behind a firewall and not
directly accessible from the Internet.

In the Canary solution, the webhook_url feature (supported by multiple canaries) could can be leveraged
to initiate an HTTP(S) connection and potentially gather information about the internal infrastructure of
the application. For instance, this attack can be used to invoke internal unprotected webhooks or reach
internal API endpoints.

The SSRF in question is considered to be “blind”, since the attacker does not receive the full response
body. However, numerous techniques exist to infer results by either using timing or DNS requests . For 6

example, the attacker may infer its success or failure by comparing the web application latency on
different requests and detect if there was a reply, or not, from an internal remote host.

Reproduction Steps

Perform a GET request to the /generate endpoint, specifying the URL of a controlled web server (e.g.,
Burp Suite’s Collaborator or a standard web server with full requests logging) in the webhook_url
parameter.

After triggering the vulnerable functionality, you can observe the request hitting the external endpoint:

 POST /test HTTP/1.1
Host: <BURP_SUITE_COLLABORATOR_INSTANCE_ID>.oastify.com
User-Agent: python-requests/2.31.0
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive
content-type: application/json
Content-Length: 414

{"channel": "HTTP", "token_type": "azure_id", "src_ip": "127.0.0.1", "src_data":
null, "token": "a+test+token", "time": "2024-04-26 13:09:41 (UTC)", "memo":

CAN-Q224-9. Blind SSRF via Token Webhook
Severity Low
Vulnerability Class Server-Side Request Forgery (SSRF)

Component Canaries with webhook_url support

Status Closed

 https://lab.wallarm.com/blind-ssrf-exploitation/6

 of WWW.DOYENSEC.COM26 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

"Congrats! The newly saved webhook works", "manage_url": "http://example.com/
test/url/for/webhook", "additional_data": {"src_ip": "1.1.1.1", "useragent":
"Mozilla/5.0...", "referer": "http://example.com/referrer", "location": "http://
example.com/location"}}

Note the particular User-Agent, which demonstrates that the request has been made by the vulnerable
web application.

This endpoint also accepts private IP addresses, opening up the possibility for a Cross Site Port
Attack (XSPA), which allows an attacker to enumerate services used by the web application, or exposed
by the victim server or neighboring servers, by conducting a port scan from the perspective of the
vulnerable host.

To perform an XSPA attack, it is sufficient for an attacker to issue a batch of GET requests to the correct
endpoint, specifying an internal target (e.g., http://domain.internal) followed by the desired port
number.

The feasibility of this attack was confirmed by measuring significant differences in response times for
requests for valid and invalid open ports (e.g., 127.0.0.1:8080 vs. 127.0.0.1:1234).

Impact

Medium. By leveraging this vulnerability, an attacker can gain information about the local system, internal
network and potentially machines in adjacent networks. The ability to issue arbitrary requests to internal
endpoints may also cause unwanted interactions with internal systems.

Complexity

Low. An attacker just needs to abuse an already existing functionality offered by the web application. No
mitigation has been put in place to mitigate this issue. Since the dashboard is exposed and
unauthenticated by design, the attacker has high chances of discovering it and exploiting the issue.

Remediation

The application could leverage the “advocate ” library. Usually SSRF protections involve the resolution of 7

the hostname to an IP address and then checking whether the IP address belongs to a private network
(RFC 1918). Since the webhook feature of a Canary instance could be legitimately used to call internal
monitoring services to propagate an alert, such mitigation techniques needs to be carefully evaluated for
this application. For instance, the creation of canaries with web-hooks pointing to internal services should
be authorized (e.g., shared key set in the instance configuration files).

Resources	

• OWASP, “Server Side Request Forgery”
https://www.owasp.org/index.php/Server_Side_Request_Forgery

 https://pypi.org/project/advocate/7

 of WWW.DOYENSEC.COM27 29

https://pypi.org/project/advocate/
http://www.doyensec.com
https://www.owasp.org/index.php/Server_Side_Request_Forgery

Thinkst Applied Research - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Class

Components With Known Vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References (IDOR)

Insufficient Authentication and Session Management

Insufficient Authorization

Insufficient Cryptography

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Condition

Security Misconfiguration

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

User Privacy

Time-of-Check to Time-of-Use (TOCTOU)

Insecure Deserialization

 of WWW.DOYENSEC.COM28 29

http://www.doyensec.com

Thinkst Applied Research - Security Auditing Report

Appendix B - Remediation Checklist
The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest, Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if you’d like more information on our retesting process.

☑︎ CAN-Q224-1. ReDoS via Outdated “python-multipart” Library
Update the “python-multipart” dependency to the latest secure version

☑︎
CAN-Q224-2. Overprivileged AWSProcessTokenLogsRole Lambda Role
We recommend applying resource limitation on the kms:Decrypt operation on the
AWSProcessTokenLogsRole role. New canary keys should be either tagged or named to restrict
their namespace within the role

☐
CAN-Q224-3. Unencrypted Lambda Environment Variables
As an infrastructure security best practice, AWS Secrets Manager with a custom key and
encryption in transit should be applied while storing sensitive environment variables

☐
CAN-Q224-4. Missing Authorization in create_user_api_tokens
Utilize authentication mechanisms such as AWS Identity and Access Management (IAM)
policies, API keys, AWS Cognito, or OAuth tokens to authenticate and authorize users accessing
the API Gateway function

☑︎ CAN-Q224-5. Stored Cross-Site Scripting on "Cloned Website" Token
Perform input validation and the appropriate output encoding on the clonedsite parameter

☑︎ CAN-Q224-6. Stored Cross-Site Scripting in "Slow Redirect" Token Page
Perform input validation and the appropriate output encoding on the redirect_url parameter

☐
CAN-Q224-7. Potential Denial of Service via Unlimited Creation of “AWS” Canary Tokens
Provide an option to restrict the number of AWS Key tokens.
Consider providing an option for users to configure a limit of the token type or a secret key to be
submitted during the creation. Requiring a configurable secret key to create tokens could be
applied to other canaries with limited resources (e.g. see CAN-Q224-8)

☐
CAN-Q224-8. Potential Denial of Service via Unlimited Creation of “Web Image” Canary Tokens
Provide an option to limit the number of created “web image” tokens.
Consider providing an option for users to configure an upper limit of created “web image” tokens,
which will allow them to protect themselves against any denial-of-service attempts

☑︎ CAN-Q224-9. Blind SSRF via Token Webhook
The application could leverage the “advocate” library

 of WWW.DOYENSEC.COM29 29

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Source Code Auditing
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist

