
The Brave browser includes a self-custodial crypto wallet. Brave Wallet is integrated

within the browser so does not require extensions, and guarantees the privacy of its

users and the security of their funds. Our Security & Privacy strategy follows high

standards. It comprises a thorough internal Security & Privacy review process -

frequently advancing the industry with security standards , external penetration 1

testing on the more sensitive components, and a thriving external bug bounty

program https://hackerone.com/brave.

As part of our open security practices, the following pages will guide you through a

pentest exercise executed on the Brave Wallet concluded on 11/11/2022. At Brave, we

perform pen-testing activities with reputable partners, such as Doyensec.

From the pentest emerged nine (9) security issues, of which one denial-of-service

was marked as High severity. Besides one informational severity issue, Brave

Software addressed all of the security vulnerabilities in a timely manner. Brave

advises addressing the residual informational severity issue by employing hardware

crypto wallets associated with the browser, such as Ledger.

 EIP contributions, in the case of the Wallet1

TODO

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Brave Wallet

Prepared for: Brave Software, Inc.
Prepared by: Mykhailo Baraniak, Adrian Denkiewicz
Date: 11/11/2022

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Table of Contents
Table of Contents 1

Revision History 2

Contacts 2

Executive Summary 3

Methodology 5

Project Findings 7

Appendix A - Vulnerability Classification 33

Appendix B - Remediation Checklist 34

 of WWW.DOYENSEC.COM1 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 34

Version Date Description Author

1 07/22/2022 First release of the final report Mykhailo Baraniak
Adrian Denkiewicz

2 07/24/2022 Peer review Luca Carettoni

3 11/11/2022 Retesting Sercan Sayitoglu

4 11/11/2022 Peer review Anthony Trummer

Company Name Email

Brave Software, Inc. Yan Zhu yan@brave.com

Brave Software, Inc. Andrea Brancaleoni abrancaleoni@brave.com

Doyensec, LLC John Villamil john@doyensec.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

mailto:yan@brave.com
mailto:abrancaleoni@brave.com
mailto:john@doyensec.com
mailto:luca@doyensec.com
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Executive Summary

Overview

Brave Software engaged Doyensec to perform a
security assessment of the Brave Wallet. The
project commenced on 07/11/2022 and ended
o n 0 7 / 2 2 / 2 0 2 2 re q u i r i n g t w o s e c u r i t y
researchers. The project resulted in nine (9)
findings of which one (1) was rated as High
severity.

The project consisted of a manual application
security assessment performed on the desktop
and mobile platforms.

On 11/11/2022, Doyensec security engineers
retested the browser against all outstanding
vulnerabilities. This document summarizes the
results after this investigation.

Testing was conducted remotely from Doyensec's
EMEA and US offices.

Scope

Through meetings with Brave Software the scope
of the project was clearly defined. The agreed
upon assets are listed below:

• Brave Wallet for Android
• Brave Wallet for iOS
• Brave Wallet for Desktop

The testing took place using a development build
of the Brave Browser using the latest version of
the software at the time of testing. In detail, this
activity was performed on the following releases:

• Brave-core
• 52aa957fcb6999f85b44107084a0326832

c693f2 on the branch wallet-pentest
• Brave-ios

• d30d8a7c3793880177d187299dc14a995
5e4929b on the branch development

Scoping Restrictions

During the engagement, Doyensec did not
encounter any difficulties while testing the
application. Brave Software was very responsive
in debugging any issues to ensure a smooth
assessment.

Findings Summary

Doyensec researchers discovered and reported
nine (9) vulnerabilities in the Brave Wallet. While
most of the issues were departures from best
practices and Low-severity flaws, Doyensec
identified two (2) issues rated respectively as
Medium and High severity.

It is important to reiterate that this report
represents a snapshot of the environment’s
security posture at a point in time.

The findings included several Denial of Service
scenarios which can either result in termination of
the renderer or browser processes. We also
identified four Insecure Design issues which
expose the Wallet to various risks and observed
two Information Exposure issues.

Overall, the security posture of the tested
components was found to be in line with industry
best practices.

Doyensec found the system to be well architected
with the exclusion of the following aspects:

• The UI presented to the users incorrectly
handled Unicode characters and overly long
messages

• Sensitive information, such as the user’s
private key, inconsistently remained in the
heap and could be exposed to other Browser
components

 of WWW.DOYENSEC.COM3 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Recommendations

The following recommendations are proposed
based on studying the Brave Wallet’s security
posture and the vulnerabilities discovered during
this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

• Decrease the maximum lock-out time for the
wallet. The Desktop and Android wallets can
remain unlocked for an entire week. The iOS
wallet locks after 30 minutes

Long-term improvements

• Ensure the exposed provider objects are
always trusted and can be safely used by
DApps

• We observed that provider objects could be
used as a Content-Security-Policy bypass
mechanism. They are not restricted by any
policies, and thus could be used to, for
example, exfiltrate sensitive data to the
disallowed endpoints. As many different CSP
bypasses could be used instead we decided
to not report this as a finding. Nevertheless, it
is recommended to improve this behavior

• On mobile devices, no integrity checks to
prevent execution on rooted or jail-broken
devices are made. The wallet’s sensitivity is a
good reason to detect and block its usage on
vulnerable devices

Retesting Overview

Apart from one informational severity issue, all
of the security vulnerabilities were addressed in
a timely manner by Brave Software. Brave
advises to address the residual informational
severity issue by employing hardware crypto
wallets associated to the browser, such as
Ledger.

 of WWW.DOYENSEC.COM4 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key to standing
against threats. Thus we recommend a whitebox
approach combining dynamic fault injection with
an in-depth study of the source code to maximize
the ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g., OWASP
Testing guide recommendations), as well as
custom checklists, to ensure full coverage of both
code and vulnerability classes.

Setup Phase

Brave Software provided access to the source
code repositories, debugging symbols, and
dedicated binaries for all in-scope operating
systems.

The brave-core repository, hosted at https://
github.com/brave/brave-core, contains the source
code used by the Android and Desktop versions of
the wallet.

The source code of the Brave Wallet for iOS is
hosted at https://github.com/brave/brave-ios.

T h e o f fi c i a l B r a v e W a l l e t ’s d e v e l o p e r
documentation can be found on this page: https://
wallet-docs.brave.com/.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools

in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:

• Burp Suite
• WinDbg Preview
• Android Studio
• Xcode
• Apktool
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is Burp Suite. However, we
also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

The exposed Web API primitives were tested from
the perspective of a compromised web page. We
inspected the data exchanged between the Web
API and configured EVM chains.

Mobile Application Techniques

During mobile security assessments, we treat the
entire device as an untrusted environment. We
study an application's use of cryptography to
secure data, in transit and at rest, to protect user's
privacy. For the in-scope servers, we attack the
remote mobile endpoints using our web testing
techniques and methodology.

Having a great understanding of the architecture
and security structure of Android and iOS devices,
we evaluate platform specific functionality such
as the safe use of intents and broadcast
messages, IPC controls, secure sandbox

 of WWW.DOYENSEC.COM5 34

https://github.com/brave/brave-core
https://github.com/brave/brave-core
https://github.com/brave/brave-ios
https://wallet-docs.brave.com/
https://wallet-docs.brave.com/
https://portswigger.net/burp/
https://apps.microsoft.com/store/detail/windbg-preview/9PGJGD53TN86?hl=en-us&gl=US
https://developer.android.com/studio/index.html
https://developer.apple.com/xcode/
https://ibotpeaches.github.io/Apktool/install/
http://www.doyensec.com

Brave Wallet - Security Auditing Report

configuration, user protection and confidentiality,
and UX interaction.

We audit the design and implementation of
cryptography, custom protocols, anti-cheating
systems, and jailbreak detection features. In this
area, we use physical devices (rooted or
jailbroken), emulators and debugging tools to
carefully exercise all application functionalities.

Desktop and Server Applications

Doyensec has extensive experience finding flaws
in thick clients, standalone binaries, and server
daemons. We write customized tools to map out
control flow and study an application's behavior
and internals. Mapping out attack surface,
whether local or remote, is paramount to a
successful engagement. Doyensec also studies
the application's ecosystem, looking for potential
pitfalls and common misconceptions.

We deconstruct the application looking for privacy
leaks and secrets. We understand the storage,
transmission, and protection of user information
is critical, along with the server-side handling of
user provided data.

The web browser has a unique threat model
where the process browser is considered trusted,
and multiple renderer processes are always
assumed to be compromised. Given that the
wallet is implemented in the trusted process, we
analyzed the attack scope from the perspective of
a malicious web page and a fully compromised
renderer.

 of WWW.DOYENSEC.COM6 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Project Findings
The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

This table is organized by time of discovery. The issues at the top were found first, while those at the
bottom were found last. Presenting the table in this fashion has a number of benefits. It inherently shows
the path our auditing took through the target and may also reveal how easy or difficult it was to discover
certain findings. As a security engagement progresses, the researchers will gain a deeper understanding
of a target which is also shown in this table.

Findings Recap Table

ID Title Vulnerability Class Severity Status

BRA-Q322-1 Malformed Ethereum Method
Crashes The Browser

Denial of Service
(DoS)

High Closed

BRA-Q322-2 Sensitive Functionality Is Not
Password Protected

Insecure Design Low Closed

BRA-Q322-3 Misleading Blockchain Names Insecure Design Informational Closed
BRA-Q322-4 Inconsistent Use of

SecureZeroData to Protect Private
Keys

Insecure Design Low Closed

BRA-Q322-5 Insufficient Number of PBKDF
Iterations

Insufficient
Cryptography

Informational Closed

BRA-Q322-6 Prototype Pollution Against
Window Provider Objects

Insecure Design Low Closed

BRA-Q322-7 Misleading Signing Request
Message

Insecure Design Medium Closed

BRA-Q322-8 The Wallet Details Are Exposed On
brave://prefs-internals

Information Exposure Informational Open

BRA-Q322-9 Missing Blurring for Recovery
Phrase Screen on iOS

Information Exposure Low Closed

 of WWW.DOYENSEC.COM7 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM8 34

Critical

High

Medium

Low

Informational 3

4

1

1

0

Information Exposure

Insecure Design

Denial of Service (DoS)

Insufficient Cryptography 1

1

5

2

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

The Brave Wallet exposes the window.ethereum.request method which is used to submit an RPC
request to the remote EVM node. For some methods, the provider itself handles the response, but any
other methods (even unrecognized ones) are sent directly to a remote EVM node. This is implemented by
the EthereumProviderImpl::CommonRequestOrSendAsync method in the components/brave_wallet/
browser/ethereum_provider_impl.cc file.

else {
 json_rpc_service_->Request(normalized_json_request, true, std::move(id),
 mojom::CoinType::ETH, std::move(callback));
}

In this case, the method name is also copied to the X-Eth-Method HTTP header inside the new JSON
RPC request. This is happening inside the JsonRpcService::RequestInternal function, in the
components/brave_wallet/browser/json_rpc_service.cc file:

request_headers["X-Eth-Method"] = method;

Note that user-controlled value is assigned without any sanitization. This assignment is the root-cause of
the discussed vulnerability.

When a request object is prepared, it is passed to the APIRequestHelper::Request method as defined in
the components/api_request_helper/api_request_helper.cc file. The method calls the
APIRequestHelper::CreateLoader method in the same file.

The headers are copied to the final object, using the SetHeader method:

if (!headers.empty()) {
 for (auto entry : headers)
 request->headers.SetHeader(entry.first, entry.second);
}

This method is not a part of the brave-core repository, but its definition can be found in the public
Chromium code:

void HttpRequestHeaders::SetHeader(const base::StringPiece& key,
 const base::StringPiece& value) {
 // Invalid header names or values could mean clients can attach
 // browser-internal headers.

BRA-Q322-1. Malformed Ethereum Method Crashes The Browser
Severity High
Vulnerability Class Denial of Service (DoS)

Component components/brave_wallet/browser/
json_rpc_service.cc

Status Closed

 of WWW.DOYENSEC.COM9 34

http://json_rpc_service.cc
http://www.doyensec.com

Brave Wallet - Security Auditing Report

 CHECK(HttpUtil::IsValidHeaderName(key)) << key;
 CHECK(HttpUtil::IsValidHeaderValue(value)) << key << ":" << value;
 SetHeaderInternal(key, value);
}

The second CHECK macro is testing the user-supplied value for the presence of any invalid characters
such as new lines or a null byte:

bool HttpUtil::IsValidHeaderValue(base::StringPiece value) {
 // Just a sanity check: disallow NUL, CR and LF.
 for (char c : value) {
 if (c == '\0' || c == '\r' || c == '\n')
 return false;
 }
 return true;
}

If the provided method name contained a new line character, the method would return false, thus the
CHECK macro would trigger process termination as stated in the Chromium code:

// CHECK dies with a fatal error if its condition is not true. It is not
// controlled by NDEBUG, so the check will be executed regardless of compilation
// mode.

Note that this happens inside the browser process, thus the entire Brave browser is terminated, not just a
single renderer process.

Reproduction Steps
To trigger the crash, serve the following code on an HTTPS-enabled website:

<script>
 function poc() { window.ethereum.request({method: ‘foo\n', params:
[]}); }
</script>

<button onclick="poc()">CRASH</button>

Navigate to the page and click on the “CRASH” button. The browser will immediately exit. The issue can
be reproduced on the desktop and mobile platforms.

Impact
High. Visiting a page with a malicious script can crash the browser process. The attack does not require
user-action or a configured Brave Wallet.

Complexity
Low. The exploitation requires an attacker to use well-defined API with unexpected input values.

 of WWW.DOYENSEC.COM10 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Remediation

Sanitize the method name by ensuring no null byte or new line characters are present inside. The
Ethereum EIP-1193 standard suggests to return error 4200 (“Unsupported Method”) in such a situation.
Alternatively, allow such characters in the request body and encode them in the HTTP header.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on:

- Brave Android 1.47.56
- Brave Desktop 1.47.55
- Brave IOS 1.45.116

The affected source code has been updated and a sanitization method has been implemented. The
correct fix has also been confirmed by dynamic testing.

Resources

• Ethereum.org, EIP-1193: Ethereal Provider JavaScript API
https://eips.ethereum.org/EIPS/eip-1193

• The Chromium Authors, http_request_headers.cc : SetHeader method
h t t p s : // c h ro m i u m . g o o g l e s o u rc e . c o m / c h ro m i u m / s rc / + / re f s / h e a d s / m a i n / n e t / h t t p /
http_request_headers.cc

• The Chromium Authors, check.h : CHECK macro
https://chromium.googlesource.com/chromium/src/+/main/base/check.h

 of WWW.DOYENSEC.COM11 34

https://eips.ethereum.org/EIPS/eip-1193
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/http/http_request_headers.cc
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/http/http_request_headers.cc
https://chromium.googlesource.com/chromium/src/+/main/base/check.h
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

To increase the overall security of crypto wallet applications, it is important to require user credentials
before performing sensitive operations such as private key retrieval, seed backup, and account removal.

The Brave Wallet doesn't protect sensitive functionalities with an additional password confirmation
dialog. While this is likely a product decision, we believe that such additional step is largely accepted by
users, hence implemented by other major wallets.

Reproduction Steps
To reproduce the issue, perform the following steps:

1. A victim user unlocks the Brave wallet and leaves the wallet unmonitored
2. An attacker gets access to the victim's computer and the export private key by clicking on: Accounts

-> Select Account1 -> Account details -> Private Key -> Show key

BRA-Q322-2. Sensitive Functionality Is Not Password Protected
Severity Low

Vulnerability Class Insecure Design

Component Brave Wallet | Desktop/Android/IOS

Status Closed

 of WWW.DOYENSEC.COM12 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Impact

High. An attacker with physical access to the unlocked wallet will be able to completely compromise the
account.

Complexity
High. The attacker needs to get physical access to the unlocked wallet. The desktop version of the wallet
enables arbitrary lock time settings, which might mitigate the issue if the user sets a small timeframe.

Remediation

Protect, with a password verification window, all sensitive functionalities such as private key retrieval,
seed backup, account removal, etc. Implement a similar protection mechanism as in other major crypto
wallets (MetaMask is shown below):

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on:

- Brave Android 1.47.56
- Brave Desktop 1.47.55

 of WWW.DOYENSEC.COM13 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

- Brave IOS 1.45.116

The affected source code has been updated and a password challenge method has been implemented.
The fix was also confirmed by dynamic testing.

Resources

• MITRE, CWE-284: Improper Access Control
https://cwe.mitre.org/data/definitions/284.html

 of WWW.DOYENSEC.COM14 34

https://cwe.mitre.org/data/definitions/284.html
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

Before rendering a blockchain name, Brave Wallet uses the reduceNetworkDisplayName function to
reduce the network name.

export const reduceNetworkDisplayName = (name: string) => {
 if (!name) {
 return ''
 } else {
 const firstWord = name.split(' ')[0]
 if (firstWord.length > 9) {
 const firstEight = firstWord.slice(0, 6)
 const reduced = firstEight.concat('..')
 return reduced
 } else {
 return firstWord
 }
 }
}

Such a design decision leads to ambiguity for users and possible unintended transactions. Users must
hover over the blockchain name to be sure on which network they will be executing transactions.

Reproduction Steps
To reproduce the issue, perform the following steps:

1. Unlock the desktop version of the Brave Wallet and select Solana Mainnet

BRA-Q322-3. Misleading Blockchain Names
Severity Informational

Vulnerability Class Insecure Design

Component Brave Wallet | Desktop

Status Closed

 of WWW.DOYENSEC.COM15 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

2. Verify how the chain name is rendered in the wallet
3. Switch the network to the Solana Testnet and verify how it is rendered in the wallet.

Without a mouse hover over the blockchain name, a user can spot only a very minor difference in the
icon color.

Impact

Potentially high. Such insecure design could lead to unintended transactions. For example, executing
transaction on the main network instead of using test network.

Complexity
N/A

Remediation

Always show complete blockchain name. Or at least the first and last word from the whole blockchain
name. A secure user experience can greatly improve the overall security of the wallet against abuses and
accidental mistakes.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on Brave Desktop 1.47.55.

The affected source code has been updated and the blockchain names are now securely displayed. The
fix was also confirmed by dynamic testing.

 of WWW.DOYENSEC.COM16 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

The accounts’ private keys are stored as private std::vector<uint8_t> members of the HDKey class as
defined in the components/brave_wallet/browser/internal/hd_key.cc file. The HDKey object is
destroyed as soon as a user locks the wallet. The destructor ensures that the private key data is safely
zeroed which is not the default behavior of the std::vector destructor.

HDKey::~HDKey() {
 secp256k1_context_destroy(secp256k1_ctx_);
 SecureZeroData(private_key_.data(), private_key_.size());
}

The SecureZeroData method is defined in the components/brave_wallet/common/mem_utils.cc file. It
calls SecureZeroMemory on Windows and manually overwrites the memory on other systems.

void SecureZeroData(void* data, size_t size) {
 if (data == nullptr || size == 0)
 return;
#if BUILDFLAG(IS_WIN)
 SecureZeroMemory(data, size);
#else
 // 'volatile' is required. Otherwise optimizers can remove this function
 // if cleaning local variables, which are not used after that.
 volatile uint8_t* d = (volatile uint8_t*)data;
 for (size_t i = 0; i < size; i++)
 d[i] = 0;
#endif
}

We observed an inconsistency in handling the private key whenever its copy is made. Multiple copies are
made using a bare std::vector which does not guarantee a secure release of the internal data. A
std::vector always stores data on the heap. When a std::vector is released, the data may be reused
by other code. The following methods are using copies of the private key without ensuring that internal
memory is safely released.

components/brave_wallet/browser/internal/hd_key.cc file, line 371.

std::string HDKey::GetPrivateExtendedKey() const {
 std::vector<uint8_t> key;
 key.push_back(0x00);
 key.insert(key.end(), private_key_.begin(), private_key_.end());

BRA-Q322-4. Inconsistent Use of SecureZeroData to Protect Private
Keys
Severity Low
Vulnerability Class Insecure Design

Component components/brave_wallet/browser/internal/
hd_key.cc

Status Closed

 of WWW.DOYENSEC.COM17 34

http://www.doyensec.com
http://hd_key.cc

Brave Wallet - Security Auditing Report

 return Serialize(MAINNET_PRIVATE, key);
}

std::string HDKey::Serialize(uint32_t version,
 const std::vector<uint8_t>& key) const {
 std::vector<uint8_t> buf;
 ...
 buf.insert(buf.end(), key.begin(), key.end());
}

components/brave_wallet/browser/internal/hd_key.cc file, line 378.

std::string HDKey::GetEncodedPrivateKey() const {
 return base::ToLowerASCII(base::HexEncode(private_key_));
}

components/brave_wallet/browser/internal/hd_key.cc file, line 472.

std::unique_ptr<HDKeyBase> HDKey::DeriveChild(uint32_t index) {
 ...
 std::vector<uint8_t> data;
 ...

 data.insert(data.end(), private_key_.begin(), private_key_.end()); //; BAD
 ...
 if (!private_key_.empty()) {
 // Private parent key -> private child key
 // Also Private parent key -> public child key because we always create
 // public key.
 std::vector<uint8_t> private_key = private_key_;
 ...
 }
}

Reproduction Steps
To observe one of the private key copies left in the memory, attach a debugger to the browser process.
Make sure to configure the symbols and load the source code files. Set breakpoints on the
aforementioned methods and start interacting with the unlocked wallet.

When any breakpoint is hit, note down the heap address of the private key copy. Then, step out of
debugged function to ensure all objects are destroyed.
Verify that the private key copy remains in the heap memory. Sporadically, the content may be partially or
fully overwritten by other threads.

Impact
The private key data may be leaked by other browser features which do not assume any sensitive data
can be present in newly allocated memory. The destructor HDKey object confirms that the private key is
considered very sensitive information.

 of WWW.DOYENSEC.COM18 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Complexity
High. The risk of a private key disclosure is lowered due to the strong separation of the browser process
and renderer instances. To directly scan the memory, the attacker would need to escape from the browser
sandbox.

Remediation

Implement a secure version of a vector that always clears the internal memory or ensure no copies of
the private key are ever made. The move semantics or shared pointers could be used to guarantee better
control over the private key lifecycle.

Due to the constant and limited size of the private key, std::array could be used as a better alternative
for the copies. This class always stores its data on the stack, hence the lifetime of the copy is
significantly reduced. Note that the implementation does not zero the memory either, hence it does not
provide full secrecy.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

The affected source code has been updated with new deleter and allocator methods.

Resources

• MITRE, CWE-226: Sensitive Information in Resource Not Removed Before Reuse
https://cwe.mitre.org/data/definitions/226.html

 of WWW.DOYENSEC.COM19 34

http://www.doyensec.com
https://cwe.mitre.org/data/definitions/226.html

Brave Wallet - Security Auditing Report

Description

The keyring implemented by the Brave Wallet uses PBKDF2 as its key derivation function. When the
standard was written in the year 2000 the recommended minimum number of iterations was 1,000, but
the parameter is intended to be increased over time as CPU speeds increase. Since 2001, OWASP
recommends using 310,000 iterations for the PBKDF2-HMAC-SHA256 configuration.

The CreateEncryptorForKeyring method, as implemented in the components/brave_wallet/
browser/keyring_service.cc file, uses a hardcoded number of iterations:

const size_t kSaltSize = 32;
const size_t kNonceSize = 12;
const int kPbkdf2Iterations = 100000;
const int kPbkdf2KeySize = 256;

bool KeyringService::CreateEncryptorForKeyring(const std::string& password,
 const std::string& id) {
 if (password.empty())
 return false;
 std::vector<uint8_t> salt(kSaltSize);
 if (!GetPrefInBytesForKeyring(kPasswordEncryptorSalt, &salt, id)) {
 crypto::RandBytes(salt);
 SetPrefInBytesForKeyring(kPasswordEncryptorSalt, salt, id);
 }
 encryptors_[id] = PasswordEncryptor::DeriveKeyFromPasswordUsingPbkdf2(
 password, salt, kPbkdf2Iterations, kPbkdf2KeySize);
 return encryptors_[id] != nullptr;
}

Reproduction Steps
This is a source code finding.

Impact
The current PBKDF2 configuration is not considered weak, but it does not follow the applicable
recommendation. A weaker encryption scheme can be subjected to brute force attacks that have a
reasonable chance of succeeding using current attack methods and resources.

BRA-Q322-5. Insufficient Number of PBKDF Iterations
Severity Informational
Vulnerability Class Insufficient Cryptography

Component components/brave_wallet/browser/
keyring_service.cc

Status Closed

 of WWW.DOYENSEC.COM20 34

http://keyring_service.cc/
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Complexity
High. The attacker must first gain access to the encrypted secret and then perform a password cracking
attack. The complexity will vary depending on the password strength.

Remediation

Increase the number of iterations to the recommended value. As this recommendation will change over
time, it is important to monitor and keep the PBKDF2 parameters up to date.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

The affected source code has been updated and the number of PBKDF2 iterations were increased to
310K.

Resources

• OWASP, “Password Storage Cheat Sheet”
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

 of WWW.DOYENSEC.COM21 34

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

The Brave Wallet exposes several provider objects, such as

• window.ethereum
• window.solana
• window.braveSolana
• window._brave_solana
• window.web3

The configuration on brave://settings/wallet controls whether other extensions, such as MetaMask,
can overwrite the provider objects. When the “Brave Wallet” option is selected, no other code should be
able to change them.

The following finding describes several places in which prototype pollution can exploit this configuration.

The window._brave_solana object

window._brave_solana is initially exposed as an empty dictionary ({}). When a Solana account is
connected to the page, it contains two additional fields: createPublickey and createTransaction. The
initialization of the object is implemented in the components/brave_wallet/resources/
solana_provider_internal.js file:

(function () {
 if (!window._brave_solana || !!window._brave_solana.createPublickey ||
 !!window._brave_solana.createTransaction) {
 return
 }

 Object.defineProperties(window._brave_solana, {
 createPublickey: {
 value: (base58Str) => {
 const PublicKey = require('@solana/web3.js').PublicKey
 const result = new Object()
 result.publicKey = new PublicKey(base58Str)
 return result
 },

BRA-Q322-6. Prototype Pollution Against Window Provider Objects
Severity Low
Vulnerability Class Insecure Design

Component • components/brave_wallet/resources/
solana_provider_internal.js

• components/brave_wallet/renderer/
js_solana_provider.cc

• components/brave_wallet/resources/
ethereum_provider.js

Status Closed

 of WWW.DOYENSEC.COM22 34

brave://settings/wallet
http://js_solana_provider.cc
http://www.doyensec.com

Brave Wallet - Security Auditing Report

 writable: false
 },
 createTransaction: {
 value: (serializedTx) => {
 const Transaction = require('@solana/web3.js').Transaction
 return Transaction.from(new Uint8Array(serializedTx))
 },
 writable: false
 }
 })
})()

At the beginning, the function tests for the presence of window._brave_solana and its fields. This
condition can be satisfied using prototype pollution for the Object class. An attacker can create arbitrary
versions of the affected fields.

The attacker-supplied createPublickey method is called by the JSSolanaProvider::CreatePublicKey
method in the components/brave_wallet/renderer/js_solana_provider.cc file:

v8::Local<v8::Value> JSSolanaProvider::CreatePublicKey(
 v8::Local<v8::Context> context,
 const std::string& base58_str) {
 // Internal object for CreatePublicKey and CreateTransaction
 ExecuteScript(render_frame()->GetWebFrame(), *g_provider_internal_script);
 const base::Value public_key_value(base58_str);
 std::vector<v8::Local<v8::Value>> args;
 args.push_back(v8_value_converter_->ToV8Value(&public_key_value, context));
 v8::MaybeLocal<v8::Value> public_key_result =
 CallMethodOfObject(render_frame()->GetWebFrame(), u"_brave_solana",
 u"createPublickey", std::move(args));

 return public_key_result.ToLocalChecked();
}

The method is executed in the context of the renderer process, thus we don’t see any risk for a direct
elevation of privileges. However, the attacker controls the returned value, hence a fake public key can be
reported to the requesting code. Depending on the DApp, this could result in an invalid transfer or similar
types of issues.

The aforementioned JSSolanaProvider::CreatePublicKey is also called in numerous places as an
argument in the CHECK() macro. As described in BRA-Q322-1, the macro will crash the process if the
condition is not met. If the attacker intentionally provides an illegal object here (e.g., not a function), it will
crash the renderer process. A malicious script on the page could exploit this behavior to perform a DoS
attack for a targeted user.

Similar attacks could be performed using the hijacked window._brave_solana.createTransaction
field.

Pollution of toString method

The JSSolanaProvider::GetSignatures method defined in the components/brave_wallet/renderer/
js_solana_provider.cc file contains the following code:

v8::MaybeLocal<v8::Value> v8_pubkey =

 of WWW.DOYENSEC.COM23 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

 CallMethodOfObject(render_frame()->GetWebFrame(), v8_pubkey_object,
 u"toString", std::vector<v8::Local<v8::Value>>());

The toString method of the returned public key can also be polluted or redefined in the called object.

Generic prototype pollution

The window.ethereum and window.solana objects are exposed using standard JavaScript Proxy
objects. They are populated using the Object.defineProperty method. Any missing property will be
implicitly inherited from the Object prototype, thus opening the providers to prototype pollution attacks.

An attacker who defined the Object.prototype.get method will gain control over every requested
property once the page is loaded.

Reproduction Steps
Set the “Brave Wallet” option on the brave://settings/ wallet page.

To trigger the crash, serve the following code on a HTTPS-enabled website and visit the page with the
unlocked Brave Wallet and a configured Solana account:

<script>
Object.prototype.createPublickey = (x) => { };
window.solana.connect(); // should trigger a crash
</script>

To return the arbitrary public key value use the following code:

<script>
Object.prototype.createPublickey = (x) => { return {publicKey: 'ABCD'}; };
window.solana.connect();
alert(window.solana.publicKey); // should show ‘ABCD’
</script>

To reproduce a generic prototype pollution use the following code:

<script>
Object.prototype.get = (x,y) => {
	if (y == "selectedAddress") return “Fake-address";
	return x[y];
}
alert(window.ethereum.selectedAddress); // should show ‘Fake-address’
</script>

Impact
Low. The attacker can either manipulate the data returned by the provider objects or trigger a renderer
crash. The described attacks are valid even with the hardened settings (“Brave Wallet” configuration). The
impact will vary depending on the implementation of the affected DApp.

 of WWW.DOYENSEC.COM24 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

The manipulated data does not affect the functionality of the wallet itself or the information displayed in
the wallet window. Every privileged operation still requires confirmation by the user and the spoofed data
is not used by the internal wallet methods.

Complexity
Low. Basic web application skills are required in order to exploit this vulnerability. Triggering a crash
requires familiarity with the wallet’s source code.

Remediation

Ensure the exposed provider objects have frozen prototypes. The objects created in the following
fashion will not inherit the default prototype:

let obj = Object.create(null);
obj.__proto__ // undefined
obj.constructor // undefined

It is also possible to freeze the specific object by calling Object.freeze method on it.

It is recommended to replace the CHECK() macro with a verification code that handles the exception and
does not crash the renderer process.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on:

- Brave Android v1.47.56
- Brave Desktop 1.47.55
- Brave IOS v1.45.116

The affected source code has been updated; Solana JavaScript api and builtins Wallet script execution
safety mechanisms have been implemented to protect against prototype pollution attacks. Deprecated
and/or 3rd party scripts were considered out of scope for this mitigation. The results have been also
confirmed by dynamic testing.

Resources

• Mozilla, MDN reference: Object.create
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/
create#object_with_null_prototype

• Mozilla, MDN reference: Object.freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

 of WWW.DOYENSEC.COM25 34

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create#object_with_null_prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create#object_with_null_prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Description

Brave Wallet is a non-custodial wallet, and only its users have sole control of their private keys. With the
help of Brave Wallet, users can conveniently perform multiple cryptographic operations, such as sign ing
transactions or even signing arbitrary messages. Such signed messages could be used for a variety of
use cases including, but not limited to:
• authenticating users
• signing off-chain messages for on-chain protocols, etc.

Great care should be taken to show a user exactly what the website requires to be signed, and warn in the
case of any suspicious scenarios.

In the sign-request window, the Brave Wallet renders all input Unicode characters. This makes the
following phishing scenarios possible:

• using new line characters to hide the actual payload in the non visible area of the sign request dialog
(no scrollbar is shown to the user until the forcible scrolls in the right area of the window)

• using Right-To-Left character to change direction of the rendered text

Reproduction Steps
To reproduce the issue, perform the following steps:

1. Unlock the MacOS version of the Brave Wallet and navigate to any connected website
2. Open the developer console and execute the following JavaScript code:

window.ethereum.request({“method":"personal_sign","params":["<ADDRESS>", "Main
Message\nEvil payload is below \n\n\n\n\n\n\n\n\n\n\n\nMy Evil payload"],"id":1})

3. Note that <ADDRESS> should be changed to your account address
4. Verify the dialog presented to the user

BRA-Q322-7. Misleading Signing Request Message
Severity Medium

Vulnerability Class Insecure Design

Component Sign Panel

Status Closed

 of WWW.DOYENSEC.COM26 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

5. Click Cancel and execute the following JavaScript code:

window.ethereum.request({"method":"personal_sign","params":["<ADDRESS>", "Sign into
\u202E EVIL"],"id":1})

6. Verify a dialog presented to the user. It contains text "Sign into LIVE"

Impact

High. An attacker can cause the UI to display erroneous data, enabling the attacker to trick the user into
performing the wrong action (such as signing an unintended message).

In many DAPs the message sign mechanism is used to authenticate its users. The user can accidentally
sign the malicious message and allow account takeover on the DAP, which doesn't strictly validate the
entire message content. Users might think that they’re signing (authenticating) into one website
(live.com), but in reality, the attacker will use that signed message to impersonate the user on another
(evil.com) domain.

Complexity
High. An attacker needs to trick a user to visit a malicious page and sign the message. In some cases,
operating system settings can impact the layout rendered to the victim, changing the success rate of the

 of WWW.DOYENSEC.COM27 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

attack. For example, MacOS has Show Scroll Bars settings which can hide or always show a scroll bar
to the user. On a tested Android device, the scroll bars were always hidden.

Considering the social engineering attack scenario and its impact, the issue was rated as having a
Medium severity.

Remediation

Show to the user a warning message about non-ASCII characters in the message requested for signing.
Alternatively, Hex-encode non-visible characters, so they are always visible to the user. Always show a
scrollbar indicating that not a whole message is currently visible to the user.

Additionally, it is recommended to show a warning message in case of the presence of any Unicode
characters, which changes the direction of the text.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on Brave Desktop 1.47.55.

The affected source code has been updated to warn about unicode characters that might be employed in
UI redressing attacks. The result has been also confirmed by dynamic testing.

Resources

• MITRE, CWE-451: User Interface (UI) Misrepresentation of Critical Information
https://cwe.mitre.org/data/definitions/451.html

 of WWW.DOYENSEC.COM28 34

http://www.doyensec.com
https://cwe.mitre.org/data/definitions/451.html

Brave Wallet - Security Auditing Report

Description

Brave is an open-source web browser based on the Chromium web browser. The Chromium browser has
its own internal pages, one of which is prefs-internals. This page contains the current profile’s data
preferences in a JSON format.

Considering the presence of Brave's embedded wallet, great care should be taken to not leak sensitive
information via any internal browser page.

Brave's brave://prefs-internals page exposes some wallet information, such as
encrypted_mnemonic , encrypted_private_key , password_encryptor_nonce , a n d
password_encryptor_salt. The information is present there even when a wallet is locked and certain
data, such as account addresses, are not available via the provider objects.

Reproduction Steps
To reproduce the issue, perform the following steps:

1. Lock a Brave Wallet and navigate to the brave://prefs-internals page. Note, that the wallet does
not have to be unlocked.

2. Search for the wal let object and ver i fy the presence of encrypted_mnemonic ,
encrypted_private_key, password_encryptor_nonce, and password_encryptor_salt

BRA-Q322-8. The Wallet Details Are Exposed On brave://prefs-internals
Severity Informational

Vulnerability Class Information Exposure

Component brave://prefs-internals

Status Open - Risk Accepted

 of WWW.DOYENSEC.COM29 34

brave://prefs-internals
brave://prefs-internals
brave://prefs-internals
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Impact

Medium. When the attacker obtains encrypted information she can start an offline bruteforce attack and
try to recover the private key or the seed phrase. The exposed account data can be used to identify a
wallet owner.

Complexity
High. The attacker needs to exploit other vulnerabilities to gain access to the content of the privileged
prefs-internal page. Considering the high complexity and potential impact, the issue was rated as
having Informational severity only.

Remediation

Do not expose wallet's sensitive information on the prefs-internal page.

Retesting Results

The risk has been accepted by Brave Software. As a mitigation to local attacks, Brave supports and
encourages the use of hardware crypto wallets. As an example, Ledger support is baked in the Brave
Wallet by default.

During retesting, Doyensec discovered that the encrypted_private_key value has been removed from
the prefs-internal page but the encrypted_mnemonic, password_encryptor_nonce and
password_encryptor_salt values are still visible.

Resources

• MITRE, CWE-1295: Debug Messages Revealing Unnecessary Information
https://cwe.mitre.org/data/definitions/1295.html

 of WWW.DOYENSEC.COM30 34

http://www.doyensec.com
https://cwe.mitre.org/data/definitions/1295.html

Brave Wallet - Security Auditing Report

Description

Sensitive application data (e.g., the wallet recovery phrase) can be leaked through screenshots taken by
the the operating system or cached during the out of focus state. Blurring the mobile application screen
can be used to prevent the sensitive mobile data from being exposed.

Doyensec discovered that Brave Wallet for iOS does not deploy sufficient protections to prevent screens
capturing when backgrounding the application.

Reproduction Steps
To reproduce the issue, perform the following steps:

1. Unlock the iOS version of the Brave Wallet and navigate to the Accounts -> Backup
2. "Swipe up" , putting the Brave Wallet into the background state
3. "Swipe up" again and look for the Wallet on the list of all open applications
4. Verify that recovery phrase screen is not blurred and is visible to the attacker.
5. The cached files could be found also in the /var/mobile/Containers/Data/Application/

<APP_ID>/Library/SplashBoard/Snapshots/com.brave.ios.BrowserBeta - {DEFAULT GROUP}/

BRA-Q322-9. Missing Blurring for Recovery Phrase Screen on iOS
Severity Low

Vulnerability Class Information Exposure

Component Brave Wallet | iOS

Status Closed

 of WWW.DOYENSEC.COM31 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Impact

High. A recovery phrase is a very sensitive piece of information. If an attacker can get the recovery
phrase, she will have access to all of the crypto assets associated with the wallet.

Complexity
High. To extract a cached version of the recovery phrase screen, the attacker will need to compromise the
user's device via installing a malicious application or exploiting a critical vulnerability.

Remediation

Blur the recovery phrase screen whenever the wallet switches to the background state. Implement the
same mechanism that is already used for the private key screen.

Retesting Results

During retesting, Doyensec confirmed that the issue has been fixed and the vulnerability can no longer
be exploited.

This remediation progress was verified on Brave iOS 1.45.116.

The application has been updated to deploy transition-to-background protections in order to avoid
accidental data leakage.

Resources

• OWASP, “Mobile Security Testing Guide”
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md

 of WWW.DOYENSEC.COM32 34

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md
http://www.doyensec.com

Brave Wallet - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Class

Components With Known Vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References (IDOR)

Insufficient Authentication and Session Management

Insufficient Authorization

Insufficient Cryptography

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Condition

Security Misconfiguration

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

User Privacy

Time-of-Check to Time-of-Use (TOCTOU)

Insecure Deserialization

 of WWW.DOYENSEC.COM33 34

http://www.doyensec.com

Brave Wallet - Security Auditing Report

Appendix B - Remediation Checklist
The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest, Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if you’d like more information on our retesting process.

✓
Sanitize the method name by ensuring no null byte or new line characters are present inside

✓
Protect with a password verification window all sensitive functionalities such as private key
retrieval, seed backup, account removal, etc

✓
Always show complete blockchain name

✓
Implement a secure version of a vector that always clears the internal memory or ensure no
copies of the private key are ever made

✓
Increase the number of iterations for PBKDF2 to the recommended value

✓
Ensure the exposed provider objects have frozen prototypes

✓
Show to the user a warning message about non-ASCII characters in the message requested for
signing

☐ Do not expose wallet's sensitive information on prefs-internal page

✓
Blur the recovery phrase screen whenever wallet switches to the background state (iOS only)

 of WWW.DOYENSEC.COM34 34

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist

