
CVE Report

 

 � of � WWW.DOYENSEC.COM1 1

Security Advisory
Font parsing vulnerabilities in
macOS, iOS, tvOS, watchOS

Created by John Villamil
04/11/2017

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com
http://www.doyensec.com

Security Advisory

Overview

This document summarizes the results of a vulnerability research activity aimed at
discovering font parsing vulnerabilities in Apple’s macOS. While security testing was not
meant to be comprehensive in term of attack and code coverage, we have identified four
(4) vulnerabilities that could lead to code execution and information leakage through
parsing of malicious font files.

On Mar 27th 2017, Apple has released an update to address these issues affecting
macOS, iOS, tvOS and watchOS.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.  

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.
 
Copyright 2017. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information. 

 � of � WWW.DOYENSEC.COM1 9

http://www.doyensec.com

Security Advisory

Summary

A memory corruption vulnerability was identified in a core component of Apple’s font
parsing - CarbonCore. This issue could allow an attacker to execute code during the
parsing of a malicious Datafork TrueType font.

Technical Description

When parsing the dfont file format, CarbonCore reads a DWORD from the file and uses it
to index a memory address without any validation. The "size" argument of a call to
bcopy is read from this attacker controlled index.

In the following instruction, rax is attacker controlled.

0x7fff92c48824 <+418>: movzx edx, byte ptr [rcx + rax]

 frame #0: 0x00007fff92c48824 CarbonCore`GetResourcePtrCommon + 418
 frame #1: 0x00007fff92c4b7bc CarbonCore`RMGetIndexedResource + 42
 frame #2: 0x00007fff8f00599e
libFontParser.dylib`TResourceForkFileReference::GetIndexedResource(unsigned int, unsigned int,
short*, unsigned long*, unsigned char*) const + 54
 frame #3: 0x00007fff8f005927
libFontParser.dylib`TResourceFileDataReference::TResourceFileDataReference(TResourceForkSurrog
ate
const&, unsigned int, unsigned int) + 157
 frame #4: 0x00007fff8f00584e
libFontParser.dylib`TResourceFileDataSurrogate::TResourceFileDataSurrogate(TResourceForkSurroga
te

macOS, iOS, tvOS, watchOS CarbonCore Buffer Overflow

Vendor Apple

Severity High

Vulnerability Class Memory Corruption

Component CarbonCore

Status Patched

CVE CVE-2017-2379

Credits John Villamil @day6reak

 � of � WWW.DOYENSEC.COM2 9

http://www.doyensec.com

Security Advisory

const&, unsigned int, unsigned int) + 66
 frame #5: 0x00007fff8f05006c
libFontParser.dylib`TFont::CreateFontEntities(char const*, bool, TSimpleArray<TFont*>&, short, char
const*, bool) + 890
 frame #6: 0x00007fff8f0011a6
libFontParser.dylib`TFont::CreateFontEntitiesForFile(char const*, bool, TSimpleArray<TFont*>&, bool,
short, char const*) + 176
 frame #7: 0x00007fff8f000b72
libFontParser.dylib`FPFontCreateFontsWithPath + 209
 frame #8: 0x00000001074e7ba9
libCGXType.A.dylib`create_private_data_with_path + 19
 frame #9: 0x00007fff93576620 CoreGraphics`CGFontCreateFontsWithPath + 56

Exploitation of this vulnerability allows an attacker to execute code on the victim’s
machine through parsing of a malicious file.

Proof-of-Concept has not been included in this report. 

Remediation

Apple has released an update to address this issue:

• https://support.apple.com/en-us/HT207615 (macOS)
• https://support.apple.com/en-us/HT207617 (iOS)
• https://support.apple.com/en-us/HT207602 (watchOS)
• https://support.apple.com/en-us/HT207601 (tvOS)

Disclosure Timeline

12/22/2016 Vulnerability disclosed to Apple via product-security@apple.com
03/27/2017 Advisory and patches released by Apple

 � of � WWW.DOYENSEC.COM3 9

http://www.doyensec.com
https://support.apple.com/en-us/HT207615
https://support.apple.com/en-us/HT207617
https://support.apple.com/en-us/HT207602
https://support.apple.com/en-us/HT207601
mailto:security@apple.com

Security Advisory

Summary

A memory corruption vulnerability was identified in a core component of Apple’s font
parsing - CoreText. Through a malicious True Type Collection (ttc) font file, CoreText will
enter a loop unintentionally referencing out of bounds memory.

Technical Description

The following is a stack trace recorded at the time of crash. The flaw happens during
glyph processing.

CoreText`TRunGlue::GetAdvance(long) + 71, queue = 'com.apple.main-thread',
stop reason = EXC_BAD_ACCESS (code=1, address=0x1066d8000)
 * frame #0: 0x00007fff90246a9d CoreText`TRunGlue::GetAdvance(long) + 71
 frame #1: 0x00007fff902a025c
CoreText`TAATKerxEngine::MatchCoordinates(TRunGlue::TGlyph, TRunGlue::TGlyph, int, short, short) +
216
 frame #2: 0x00007fff9029fee0
CoreText`TAATKerxEngine::KerxControlPointTable::ProcessGlyphs(SyncState&) + 1154
 frame #3: 0x00007fff9029f416
CoreText`TAATKerxEngine::ProcessKerxControlPointTable(KerxControlPointHeader const*, unsigned
int, SyncState&) + 82
 frame #4: 0x00007fff9029f0c6
CoreText`TAATKerxEngine::KernRuns(SyncState&, KerningStatus&) + 602
 frame #5: 0x00007fff90241fed
CoreText`TKerningEngine::PositionGlyphs(TLine&, TCharStream const*) + 497

Exploitation of this vulnerability allows an attacker to execute code on the victim’s
machine through parsing of a malicious file.

macOS, iOS, tvOS, watchOS CoreText Corrupted Loop Index

Vendor Apple

Severity High

Vulnerability Class Memory Corruption

Component CoreText

Status Patched

CVE CVE-2017-2435

Credits John Villamil @day6reak

 � of � WWW.DOYENSEC.COM4 9

http://www.doyensec.com

Security Advisory

Proof-of-Concept has not been included in this report. 

Remediation

Apple has released an update to address this issue:

• https://support.apple.com/en-us/HT207615 (macOS)
• https://support.apple.com/en-us/HT207617 (iOS)
• https://support.apple.com/en-us/HT207602 (watchOS)
• https://support.apple.com/en-us/HT207601 (tvOS)

Disclosure Timeline

12/16/2016 Vulnerability disclosed to Apple via product-security@apple.com
03/27/2017 Advisory and patches released by Apple

 � of � WWW.DOYENSEC.COM5 9

http://www.doyensec.com
https://support.apple.com/en-us/HT207615
https://support.apple.com/en-us/HT207617
https://support.apple.com/en-us/HT207602
https://support.apple.com/en-us/HT207601
mailto:product-security@apple.com

Security Advisory

Summary

An information leakage vulnerability (out-of-bounds read) was discovered in Apple’s
FontParser, which could allow an attacker to disclose the process memory. This issue
could facilitate further exploitation.

Technical Description

A loop iteration can be controlled, causing it to read into unmapped memory.

The loop below calls FindIndexedString. This function will return a pointer to a 0. That
will be the first byte of a hard coded style table. While esi is 0 this table won’t be parsed
past the first byte. The registers rdx and r12 are attacker controlled.

#TFONDData::GetPostscriptName(short, unsigned char*, unsigned long)
00000000000070a2 mov r15, rcx ; CODE
XREF=__ZNK9TFONDData17GetPostscriptNameEsPhm+266
00000000000070a5 movzx esi, byte [r15] ;CRASH
00000000000070a9 mov rdi, qword [rbp+var_40]
00000000000070ad call FindIndexedString(FontNameTable_BE const&, unsigned long)
00000000000070b2 mov rcx, rax
00000000000070b5 movzx edx, byte [rcx]
00000000000070b8 lea r13, qword [rdx+r12]
00000000000070bc cmp r13, qword [rbp+var_30] ;var_30 is 0xff
00000000000070c0 mov eax, 0x0
00000000000070c5 jae loc_70f3

macOS, iOS, tvOS, watchOS FontParser Infoleak

Vendor Apple

Severity Medium

Vulnerability Class Information Disclosure

Component FontParser

Status Patched

CVE CVE-2017-2439

Credits John Villamil @day6reak

 � of � WWW.DOYENSEC.COM6 9

http://www.doyensec.com

Security Advisory

* frame #0: 0x00007fff8c6110a5 libFontParser.dylib`TFONDData::GetPostscriptName(short, unsigned
char*, unsigned long) const + 195
frame #1: 0x00007fff8c610ef3 libFontParser.dylib`TFONDData::GetPostscriptName(short) const + 69
frame #2: 0x00007fff8c610de2 libFontParser.dylib`TTrueTypeResourceFont::GetPostscriptName()
const + 64
frame #3: 0x00007fff8c60d4fa
libFontParser.dylib`TArrayOfFontsWithUniquePostscriptNames::Append(TFont* const&) + 48
frame #4: 0x00007fff8c65b42f libFontParser.dylib`TFont::CreateFontEntities(char const*, bool,
TSimpleArray<TFont*>&, short, char const*, bool) + 1853

Proof-of-Concept has not been included in this report.

Remediation

Apple has released an update to address this issue:

• https://support.apple.com/en-us/HT207615 (macOS)
• https://support.apple.com/en-us/HT207617 (iOS)
• https://support.apple.com/en-us/HT207602 (watchOS)
• https://support.apple.com/en-us/HT207601 (tvOS)

Disclosure Timeline

12/25/2016 Vulnerability disclosed to Apple via product-security@apple.com
03/27/2017 Advisory and patches released by Apple

 � of � WWW.DOYENSEC.COM7 9

http://www.doyensec.com
https://support.apple.com/en-us/HT207615
https://support.apple.com/en-us/HT207617
https://support.apple.com/en-us/HT207602
https://support.apple.com/en-us/HT207601
mailto:product-security@apple.com

Security Advisory

Summary

An information leakage vulnerability (out-of-bounds read) was discovered in Apple’s
CoreText, which could allow an attacker to disclose the process memory. This issue
could facilitate further exploitation.

Technical Description

A value is read from a True Type Collection font file without any verification being
performed. This value is added as an offset to an address. When this address is
dereferenced, a crash occurs.

We see r15 being set:

00000000000fd986 mov r15d, dword [r12+rax*4]
00000000000fd98a bswap r15d
00000000000fd98d mov r14d, dword [r12+rax*4+4]
00000000000fd992 bswap r14d
00000000000fd995 jmp loc_fda2e

A DWORD is read from the font file and a bit swap is performed. The unsanitized r15
register isn't used for a little while until it loads rbx with an address. Since r15 isn't
verified this address can point to almost anywhere:

00000000000fdad0 mov r8, qword [rbp+var_88]
00000000000fdad7 lea rbx, qword [r15+r8+0xa]
00000000000fdadc cmp rbx, r13

macOS, iOS, tvOS, watchOS CoreText Infoleak

Vendor Apple

Severity Medium

Vulnerability Class Information Disclosure

Component CoreText

Status Patched

CVE CVE-2017-2450

Credits John Villamil @day6reak

 � of � WWW.DOYENSEC.COM8 9

http://www.doyensec.com

Security Advisory

00000000000fdadf ja loc_fdb5b

And the access violation happens a few instructions later when it tries to read a word
from the unchecked address which is unmapped in this case:

CoreText`TAATControlPointAccess::GetControlPointCoordinates:
-> 0x7fff95d44b0f <+719>: mov si, word ptr [rbx]
 * frame #0: 0x00007fff95d44b0f
CoreText`TAATControlPointAccess::GetControlPointCoordinates(unsigned short,unsigned short) const
+ 719
 frame #1: 0x00007fff95cc7d7b
CoreText`TAATKerxEngine::KerxControlPointTable::ProcessGlyphs(SyncState&) +797
 frame #2: 0x00007fff95cc7416
CoreText`TAATKerxEngine::ProcessKerxControlPointTable(KerxControlPointHeader const*, unsigned
int, SyncState&) + 82
 frame #3: 0x00007fff95cc70c6
CoreText`TAATKerxEngine::KernRuns(SyncState&, KerningStatus&) + 602
 frame #4: 0x00007fff95c69fed
CoreText`TKerningEngine::PositionGlyphs(TLine&, TCharStream const*) + 497

Proof-of-Concept has not been included in this report.

Remediation

Apple has released an update to address this issue:

• https://support.apple.com/en-us/HT207615 (macOS)
• https://support.apple.com/en-us/HT207617 (iOS)
• https://support.apple.com/en-us/HT207602 (watchOS)
• https://support.apple.com/en-us/HT207601 (tvOS)

Disclosure Timeline

01/10/2017 Vulnerability disclosed to Apple via product-security@apple.com
03/27/2017 Advisory and patches released by Apple

 � of � WWW.DOYENSEC.COM9 9

http://www.doyensec.com
https://support.apple.com/en-us/HT207615
https://support.apple.com/en-us/HT207617
https://support.apple.com/en-us/HT207602
https://support.apple.com/en-us/HT207601
mailto:product-security@apple.com

